Combinational Logic Circuits @
@3.1_BOOLEAN LAWS AND THEOREMS )y

You should know enough Boolean algebra to make obvious simplifications. What follows is a discussion of
the basic laws and theorems of Boolean algebra. Some of them will look familiar from ordinary algebra but
others will be distinctly new.

Basic Laws

The commutative laws are
A+B=B+4: (3.1)
AB = BA (3.2)

These two equations indicate that the order of a logical operation is unimportant because the same answer
is arrived at either way. As far as logic circuits are concerned. Figure 3.la shows how to visualize Eq. (3.1).
All it amounts to is realizing that the inputs to an OR gate can be transposed without changing the output.
Likewise, Fig. 3.1b is a graphical equivalent for Eq. (3.2).

The associative laws are
A+(B+O)Y=A4+B)+C 3.3
A(BC) =(4ABYC (3.4)
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Commutative, associative, and distributive laws
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These laws show that the order of combining variables has no effect on the final answer. In terms of logic
circuits, Fig. 3.lc illustrates Eq. (3.3), while Fig. 3.1d represents Eq. (3.4).

The distributive law is
AB+C)=AB+ AC (3.5

Taslaw 1s easy to remember because itis identical to ordinary algebra. Figure 3. 1e shows the corresponding
logiv cauivalence. The distributive law gives you a hint about the value of Boolean algebra. If you can
rearrange a Boolean expression, the corresponding logic circuit may be simpler.

The first five laws present no difficulties because they are identical to ordinary algebra. You can use these
laws to simplify complicated Boolean expressions and arrive at simpler logic circuits. But before you begin,
you have to learn other Boolean laws and theorems.

OR Operations

The next four Boolean relations are about OR operations. Here is the first:
A+0=4 (3.6)

This says that a variable ORed with 0 equals the variable. If you think about it, makes perfect sense. When
Ais 0,

0+0=20
Andwhen 4 is 1,
1+0=1{
In cither case, Eq. (3.6) is true.
Another Boolean relation is
A+A=A4 (3.7

Again, you can see right through this by substituting the two possible values of 4. First when 4 = 0, Eq.
(3.7) gives

‘ 0+0=0
which is true. Next, 4 = 1 results in
1+1=1

which is also true because 1 ORed with 1 produces 1. Therefore, any variable ORed with itself equals the
variable.

Another Boolean rule worth knowing is

A+1=1 (3.8)
Why is this valid? When 4 = 0, Eq. (3.8) gives

0+1=1
which is true. Also. 4 = 1 gives

1+1 =1

This is correct because the plus sign implies OR addition, not ordinary addition. In summary,
Eq. (3.8) says this, if one input to an OR gate is high, the output is high no matter what the other input.
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A+A =1 (3.9)

You should see this in a Aash. If 4 is 0, A is 1 and the equation is true. Conversely, if 4 is 1, A is 0 and
the equation still agrees. In short, a variable ORed with its complement always equals 1.

Finally, we have

AND Operations
Here are three AND relations

A-1=4 (3.16)
A-4=4 (3.11)
A 0=0 (3.12)

When 4 is 0, all the foregoing are true. Likewise, when A is 1, each is true. Therefore, the three equations
are valid and can be used to simplify Boolean equations.

One more AND formula is

A-A =0 (3.13)
This one is easy to understand because you get either
0-1=0
or
1-0=0

for the two possible values of 4. In words, Eq. (3.13) indicates that a variable ANDed with its complement
always equals zero.

Double Inversion and De Morgan’s Theorems

The double-inversion rule is _

A =4 (3.14)
which shows that the double complement of a variable equals the variable. Finally, there are the De Morgan
theorems discussed in Chapter 2:

A+B=AB (3.15)

AB = A+B (3.16)

You already know how important these are. The first says a NOR gate and a bubbled AND gate are
equivalent. The second says a NAND gate and a bubbled OR gate are equivalent.

Duality Theorem

The duality theorem is one of those elegant theorems proved in advanced mathematics. We will state the
theorem without proof. Here is what the duality theorem says. Starting with a Boolean relation, you can
derive another Boolean relation by

1. Changing each OR sign to an AND sign
2. Changing each AND sign to an OR sign
3. Complementing any 0 or 1 appearing in the expression
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For instance, Eq. (3.6) says that
A+0 =4
The dual relation is
A-1=4
This dual property is obtained by changing the OR sign to an AND sign, and by complementing the 0 to

getal.

The duality thecrem is useful because it sometimes produces a new Boolean relation. For example, Eq.
(3.5) states that

AB+Cy=AB+ AC
By changing each OR and AND operation, we get the dual relation
A+BC =(A+B) 4+ () 3.17

This is new, not previously discussed. (If you want to prove it, construct the truth table for each side of the
equation. The truth tables will be identical, which means the Boolean relation is true.)

Covering and Combination

The covering rule, where one term covers the condition of the other term so that the other term becomes
redundant, can be represented in dual form as
A+A4AB =4 (3.18)
and A(A+B) =4 (3.19)
The above can be easily proved from basic laws because,
A+AB =4 - 1+AB~A(1 +B)=4-1=4

and AA+B)y=A-A+4AB=A+AB =4
The combining rules are, _

AB+AB =4 (3.20)
and in its dual form (A+B)y{(A+B)=4 (3.21)
Eq. (3.20) can easily be provedas B+ B = |
Expanding left hand side of Eq. (3.21)

A-A+A4-B+A-B+B-B =A+A(B+ B)+0
=A+A4.1=A+A=A=right hand side

Consensus Theorem

The consensus theorem finds a redundant term which is a consensus of two other terms. The idea is that if
the consensus term is true, then any of the other two terms is true and thus it becomes redundant. This can be
expressed in dual form as

AB+ AC+BC =A4B+ AC (3.22)
(A+B(A+CO)B+C)=(A+B)(A+CO) (3.23)

In the first expression, BC is the consensus term and thus redundant. This is because if BC = 1, then both
B =1and C = ] and any of the other two terms 4B or AC must be one as either 4 = 1 or A = 1. Similarly,
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in the second expression, (B + C) is the consensus term and if this term is 0 then both B =0 and C = 0. This
makes one of the other two sum terms 0 as either A =0 or A =0.

SUMMARY OF BOOLEAN RELATIONS

For future reference, here are some Boolean relations and their duals:
A+B=B+A AB=BA
A+(B+Q)=(A+B)+C A(BO) = (AB)C
A(B+C)=AB+AC A+BC={A+B)(A+()
A+0=A A-1=A
A+l=1 A-0=0
A+A=A A-A=A
A+ A =1 A-A=0
A=A A=A
A+B=AB AB=A+B
A+AB=A AA+B)=A
A+AB=A+B A(A +By=AB
AB+AB=A (A+B)(A+B)=A
AB+AC+BC=AB+AC (A+B)(A+C)(B+C)=(A+B) (A +O)

Prove that, A(4"+COY(A’'B+ Q) (A’'BC+ =0

Solution - : .

LHS = (44’ + AC) (A'B+ C) (A'BC+C") .. - :distributive law
= AC(4'B+ C) (4'BC+C") o : since, XX’ =0
={AC A'B+ AL O {A'BC+C} . . :distributive law
=AC(A'BC+CY . :since, XX'=0
=AC-A'BC+4C .- C : distributive law

. '=0=RHS N _ : since, XX' =0

Simplify, ¥=(4 + By (A(B"+ C)Y + 4'(B + ()

Solution
Y=(A+B{4+ B +CY)+AB+0) : De Morgan's theorem
=4 +B)(d+BCO)+ A (B+0) : De Morgan's theorem
" =(44+ABC + AB+BBO)+ A'(B + C)
=(4+4B+ABC+BO)+ A'(B+C)

=A(l+B+BC)+BC+A'(B+C)
=A+BC+A'(B+C)
=(d+4°(B+C)+BC
=A+B+C+BC
=A4+B+C(l1+B)

=4+B+C
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A logic ¢lip is a device that you can attach to a 14- or 16-pin DIP. This troubleshooting
tool contains 16 light-emitting diodes (1.EDs) that monitor the state of the pins. When a pin
voltage is high, the corresponding LED lights up. If the pin voltage is fow, the LED is dark.

Suppose youhave built the circuitof Fig. 3.2a, but it doesn’t work correctly. When youconnect
a logic clip to the 7408, you get the readings of Fig. 3.2b (a black circle means an LED is off,
and a whitc one means it’s on). When veu connect the clip to the 7432, you get the indications of
Fig. 3.2c. Which of the gates is faulty”?

®: 140 ®1 140
Q2 130 ®2 130
®3 120 ®3 120
©4 110 ;:83 ®4 110
05 100 05 100
®5 90 06 90
®7 80 ®7 &0

{a) {c)

Solution  When you use a logic clip, ali you have 1o do is look at the inputs and output to isolate a faulty gate. For
instance, Fig. 3.2b applies to a 7408 (quad 2-input AND gate). The First AND gate (pins 1 to 3) is all right because
Pin 1—low
Pin 2—high
Pin 3-—low

A 2-input AND gate is supposed to have a low output if any input is low.
The second AND gate (pins 4 to 6) is defective. Why? Because
Pin 4—high
Pin 5—high
Pin 6—low
Something is wrong with this AND gate because it produces a low output even though both inputs are high.

If you check Fig. 3.2¢ (the 7432), all OR gates are normal. For instance, the first OR. gate (pins 1 to 3) is all right
because it produces a low output when the 2 inputs are low. The second OR gate (pins 4 to 6) is working correctly
since it produces a high output when 1 input is high.

1. All the rules for Boolean algebra are exactly the same as for ordinary algebra. (T or F)
2. Expand using the distributive law: ¥ = A(B + ().
3. Simplify: Y=AQ+ AQ.
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. 3.2 SUM-OF-PRODUCTS METHOD '

@

Figure 3.3 showsthe four possible ways to AND two input signals that are in complemented and uncomplemented
form. These outputs are called fundamental products. Table 3.1 lists each fundamental product next to the

input conditions producing a high output. For
instance, AB is high when A and B are low; A B
is high when A4 is low and B is high; and so on. The
fundamental products are also called minterms.
Products 4"B’, A’B, AB’, AB are represented by
my, my, My, and m; respectively. The suffix i of mr;
comes from decimal equivalent of binary values
(Table 3.1) that makes corresponding product
term high.

Fundamental Products for Two

Inputs
A4 B Fundamental Product
0 0 AB
] 1 AB
1 0 AB
1 1 AB

S|

ol

] -
B AB

(@

ANDing two variables and their complements

The idea of fundamental products applies to three or more input variables. For example, assume three
input variables: 4, B, C and their complements. There are eight ways to AND three input variables and their

complements resulting in fundamental products of

ABC,ABC,ABC,ABC, ABC, ABC, ABC, ABC

A R
==

(a)

l9R--EN|

T

(b

ABC

(c)

Examples of ANDing three variables and their complements

The above three variable minterms can alterna-
tively be represented by myg, my, ma, ms3, my, ms,
e, and mq respectively. Note that, for » variable
problem there can be 27 number of minterms.
Figure 3.4a shows the first fundamental product,
Fig. 3.4b the second, and Fig. 3.4c¢ the third. (For
practice, draw the gates for the remaining funda-
mental products.} for twice variable case.

Table 3.2 summarizes the fundamental products
by listing each one next to the input condition that
results in a high output. For instance, when 4 = 1,
B =0 and C = 0, the fundamental product results
in an output of

Y=ABC=1-0-0=1

fundamental Products for
Three Inputs

y: | B C Fundamental Products
0 0 0 ABC
0 0 1 ABC
0 | 0 ABC
0 1 1 ABC
1 0 0 ABC
1 0 I ABC
1 1 0 ABC
1 1 1 ABC
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Sum-of-Products Equation

Here is how to get the sum-of-products solution, given a truth table like Table 3.3. What you have to do is
locate each output 1 in the truth table and write down the fundamental product. For instance, the first output
1 appears for an input of 4 = 0, B = 1, and C = 1. The corresponding fundamental product is A BC. The next
output 1 appears for 4 = 1, B =0, and C = 1. The corresponding fundamental product is 4 B C. Continuing
like this, you can identify all the fundamental products, as shown in Table 3.4. To get the sum-of-products
equation, ail you have to do is OR the fundamental products of Table 3.4:

Y = ABC + ABC + ABC + ABC (3.24)
Alternate representation of Table 3.3,
Y=F(4,B C)=Xm(3,5,6,7T)
where ‘X’ symbolizes surnmation or logical OR operation that is performed on corresponding minterms and

Y=F(4, B, C) means Y is a function of three Boolean variables 4, B and C. This kind of representation of a
truth table is also known as canonical sum form.

Design Truth Table Fundamental Products for

Table 3.3

A B C Y

0 0 0 0 A B Y

0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 - 0

0 ! 1 ! 0 1 0 0

1 0 0 0 0 1 1 1 - ABC

l 0 1 1 i 0 0 0

1 1 0 1 1 0 1 1 - ABC

1 1 1 1 i 1 0 1 = ABC
1 ! 1 1 - ABC

Logic Circuit

A

After you have a sum-of-products equation, you can derive the g—_/
corresponding logic circuit by drawing an AND-OR network,
or what amounts to the same thing, a NAND-NAND network. 4 — ABC
In Eq. (3.24) each product is the output of a 3-input AND E__/
gate. Furthermore, the logical sum Y is the output of a 4-input €

OR pate. Therefore, we can draw the logic circuit as shown _i\D— Y
in Fig. 3.5. This AND-OR circuit is one solution to the design

A

B
problem that we started with. In other words, the AND-OR c L/
circuit of Fig. 3.5 has the truth table given by Table 3.3.

We cannot build the circuit of Fig. 3.5 because a 4-in- ; — ™\ 4BC
c—1/

put OR gate is not available as a TTL chip (a synonym for
integrated circuit). But a 4-input NAND gate is. Figure 3.6
shows the logic circuit as a NAND-NAND circuit with TTL

- . . AND-OR solution
pin numbers. Also notice how the inputs come from a bus, a
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group of wires carrying logic signals. In Fig, 3.6, the bus has six wires with logic signals 4, B, C, and their
complements. Microcomputers are bus-organized, meaning that the input and output signals of the logic
circuits are connected to buses.

Suppose a three-valuable truth table has a high output for these input conditions: 000, 010,
100, and 110. What is the - = =
sum-of-products circuit? 4488C¢C

7410

Solution Here are the fundamental products: -
000 : ABC G (S
010 : ABT _ R L] ) IS T OE CO
100..ABC. R |
,,,,,, . 110°: ABE
Whmyw@kthesepmducm ngct
= ABC+ABC+ABC_+ABC
The cm:uit of Fig. 3.6 will. work i weroconnect thga
mputlmestothebusasfolim .
A ipis1dnd3 - o i R RURTDE S TR W S S S
Boipms2amdio. oo ] ‘3
-E;_pmsl35= R I S o
W
B:

w |

=S e lu e e Kb |~

d

;pins9andl .
pins 4 and 2

Simplify the Boolean equation in Example 3.4 and describe the logic circuit.

So._’uti'an Thc Boolean equatmnm B : . _
B ¥= ABC+ABC+ABC+ABC T
Since € is commontoeach term, fhcterasfoliows
Y= (AB+AB+AB+AB)C
Again, factor to get _
_Y (A(B+B)+Ags+8)}i'?'” SE

Now, simplify the foregomg as fellows
e Y—{A(1)+A(1)]c—(,q +AC

This ﬁnal equatmnmeans thatyou dun‘t evcrineed a log;ccmcmt AH youzwedrsawire mmecungwpm C to-output .
Y B
: Thelessomsclear mmeRmmymymwmwwmfmmmmm
asmmpleaspossib&a“ﬁthalgebmmeﬁenmfacmrmdreduecthem-ofpmhqumuontoamveata
simpler Boolean equation, which means utmplar lagw circmt A samgla‘ !ogtc cu'cuu is pre?ﬁmdbeemse it usml]y
 costs less to bml&an& is.more rehable ‘ e &
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(QISELE-TEST)

4. How many fundamental products are there for two variables? How many for three
variables? ; . ‘ el e U L

5. The AND-OR or the NAND-NAND circuit obtained with the sum-of-products method is
always the simplest possible circuit. (T or F) . TR

3.3 TRUTH TABLE TO KARNAUGH MAP.

A Karnaugh map is a visual display of the fundamental
products needed for a sum-of-products solution. For instance,
here is how to convert Table 3.5 into its Karmaugh map. Begin
by drawing Fig. 3.7a. Note the variables and complements;
the vertical column has A followed by A, and the horizontal
row has B followed by B. The first output 1 appears for 4 = 1
and B = 0. The fundamental product for this input condition is
AB . Enter this fundamental product on the Karnaugh map as
shown in Fig. 3.7b. This 1 represents the product AB because the 1 is in row 4 and column B.

Similarly, Table 3.5 has an output 1 appearing for inputs of 4 = 1 and B = 1. The fundamental product is
AB, which can be entered on the Karnaugh map as shown in Fig. 3.7c. The final step in drawing the Karnaugh
map is to enter 0s in the remaining spaces (sée Fig. 3.7d).

-0 - o

In terms of decimal equivalence each position of Kamaugh map can be drawn as shown in
Fig. 3.7b. Note that, Table 3.5 can be written using minterms as Y= m(2, 3) and Fig. 3.7¢ represents that,

B B B B B B B B B B
4 Al 0 1 A 4 40 o0
A 412 3 Al 1 Al 1 1 A11 1

(a) b) {c) (d) (e)

Constructing a Karnaugh map

Three-Variable Maps

Here is how to draw a Karnaugh map for Table 3.6 or for
logic equation, ¥ = F(4, B, C) = Em(2,6,7). First, draw
the blank map of Fig. 3.8a, The vertical column is labeled
AB, AB,AB, and AB . With this order, only one variable
changes from complemented to uncomplemented form {or
vice versa) as you move downward. In terms of decimal
equivalence of each position the Karnaugh map is as
shown in Fig. 3.8b. Note how minterms in the equation

gets mapped into corresponding positions in the map.

- O e S DL Yy
—_-—_o 00 = o of

| - e mﬁ@@ of &
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Next, look for output 1s in Table 3.6. Qutput 1s appear for 4BC inputs of 010, 110 and 111. The fundamental
products for these input conditions are ABC , ABC , and ABC Enter 1s for these products on the Karnaugh
map (Fig. 3.8b).

The final step is 1o enter Os in the remaining spaces (Fig. 3.8¢).

c C c C c C c C
4B PN AB 4Bl 0 0
4 ABi2 3 AB| 1 AB11 0
AB AB| 6 7 AB|1 1 ABl1 1
AB AB| 4 5 AB AB| 0O 0

(a) (b) (©) (d)

} Three-variable Karnaugh map

Four-Variable Maps

Many digital computers and systems process 4-bit
numbers. For instance, some digital chips will work
with nibbles like 0000, 0001, 0010, and so on. For this [
reason, logic circuits are often designed to handle four |-
input variables {or their complements). This is why
you must know how to draw a four-variable Karnaugh
map.

Here is an example. Suppose you have a truth
table like Table 3.7. Start by drawing a blank map
like Fig. 3.9a. Notice the order. The vertical column
is AB,AB, AB, and AB. The horizontal row is
CD.CD,CD, and 0. In terms of decimal equi-
valence of each position the Karnaugh map is as shown
in Fig. 3.9b. In Table 3.7, you have output 15 appearing
for ABCD inputs of 0001, 0110, 0111, and 1110. The
fundamental products for these input conditions are
ABCD, ABCD, ABCD, and ABCD. After entering
1s on the Karnaugh map, you have Fig. 3.9¢c. The final
step of filling in 0s results in the complete map of Fig. 3.9d.

€
0
1
I e
-0 e
L0
.'" ‘l
S
R
o

_ e O DD D e e = = OO O @)D
_O e O e O =D @O =0 ~0|D

‘}Q“w'omeacenn—qcco-—-b o

& MMWNMM;MMW@W

Entered Variable Map

As the name suggests, in entered variable map one of the input variable is placed inside Karnaugh map. This
is done separately noting how it is related with output. This reduces the Karnaugh map size by one degree,
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_E'ﬁ CDh ¢b CD Cb Cb ¢b cb CD ¢p ¢cb D €D Cb ¢b CD

AR AB{0 1 3 2 4Blo0 1 3 2 48|01 0 o

AB ABl4 5 7 6 AB|4 5 7 6 ABl0 0 1 1

AB A4B|12 13 15 14 AB|12 13 15 14 ABIO 0 0 1

AB AB|8 9 11 10 AB|8 9 11 10 4B|0 o 0 0
(a) (b) (c) (d)

Constructing a four-variable Karnaugh map

i.e. a three variable problem that requires 2° = 8 locations in Karnaugh map will require 2~ = 4 locations
in entered variable map. This technique is particularly useful for mapping problems with more than four input
variables.

We illustrate the technique by taking a three variable example, truth table of which is shown in Table 3.6.
Let’s choose C as map entered variable and see how output ¥ varies with C for different combinations of
other two variables 4 and B. Fig. 3.10a shows the relation drawn from Table 3.6. For 48 = 00 we find ¥ = 0
and is not dependent on C. For A8 = 01 we find Y is complement of C thus we can write ¥ = C". Similarly,
for AB=10, Y= 0 and for 4B = 11, ¥ = 1. The corresponding entered variable map is shown in Fig. 3.10b. If
we choose A as map entered variable we have table shown in Fig. 3.10c showing relation with ¥ for various
combinations of BC; the corresponding entered variable map is shown in Fig. 3.10d.

A

== T ]

Bl Y
o] o
1| C
el o
1] 1

B

N

(b)

oy |

B C| Y c C
0 0|0 Blo o
0 1|0 Bl1 4
1 0} 1
1 1] 4

Look at Fig. 3.11a. The map contains a pair of
1s that are horizontally adjacent (next to each
other). The first 1 represents the product ABCD:
the second 1 stands for the product 4BCD.
As we move from the first 1 to the second 1,
only one variable goes from uncompiemented
to complemented form (D to DY); the other
variables don’t change form (4, & and C remain
uncomplemented). Whenever this happens, you
can eliminate the variable that changes form.

4B
AB
AB
AB

(¢)

(d)

Entered variable map of truth table shown in Table 3.6

Ch CD CD CD
AB[{0 0 o0 0
480 0 0 0
48j0 o 4D
ABlo 0 0 o0

(®)

Horizontally adjacent 1s
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The sum-of-products equation corresponding to Fig. 3.11ais
Y=ABCD+ABCD

Proof

which factors into
Y=ABC(D+ D)
Since D is ORed with its complement, the equation simplifies to
Y=ABC

In general, a pair of horizontally adjacent 1s like those of Fig. 3.11a means the sum-of-products equation
will have a variable and a complement that drop out as shown above.

For easy identification, we will encircle two adjacent 1s as shown in Fig. 3.11b. Two adjacent 1s such as
these are called a pair. In this way, we can tel} at a glance that one variable and its complement will drop out of
the corresponding Boolean equation. In other words, an encircled pair of 1s like those of Fig. 3.11b no longer
stand for the ORing of two separate products, ABCD and ABCD . Rather, the encircled pair is visualized as
representing a single reduced product ABC.

Here is another example. Figure 3.12a shows a pair of s that are vertically adjacent. These 1s correspond
to ABCD and ABCD . Notice that only one variable changes from uncomplemented to complemented form
(B to B). Therefore, B and B can be factored and eliminated algebraically, leaving a reduced product of
ACD.

ch CD CcD CD CDh CD CD CD Cch b Co CD Cb CD CD (D
AB|0 0 0 O AB|0 0 0 ABlO0 0 0 0 4AB[0 o0 0 O
ABlo o0 0 0 iBlo o0 @ 0 aBlo o o o ABlo D o
4B|0 0 0 ABl0 ©o o o ABlO 0 0 © 4B 0 0 0
AB|0 0 0 4B|l0 o0 o 0 AB|C_D o o 4B 0 0 0

{(2) (b) (<) (d)

(@9 hig. 3.12°") Examples of pairs

More Examples

Whenever you see a pair of horizontally or vertically adjacent 1s, you can eliminate the variable that appears
in both complemented and uncomplemented form. The remaining variables (or their complements) will be
the only ones appearing in the single-product term corresponding to the pair of Ls. For instance, a glance
at Fig. 3.12b indicates that B goes from complemented to uncomplemented form when we move from the
upper to the lower 1; the other variables remain the same. Therefore, the encircled pair of 1s in Fig. 3.12b,
represents the product ACD. Likewise, given the pair of 1s in Fig. 3.12¢, the only change is from D to D. So
the encircled pair of 1s stands for the product ABC .

If more than one pair exists on a Karnaugh map, you can OR the simplified products to get the Boolean
equation. For instance, the lower pair of Fig. 3.12d represents the simplified product ACD; the upper pair
stands for A BD. The corresponding Boolean equation for this map is

Y=ACD + ABD
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The Quad

A quad is a group of four 1s that are horizontally or vertically adjacent. The 1s may be end-to-end, as shown
in Fig. 3.13a, or in the form of a square, as in Fig. 3.13b. When you see a quad, always encircle it because it
leads to a simpler product. In fact, a quad eliminates two variables and their complements,

Ch CD Cpb CD ¢h Cp ¢p D ch o Cp CD
4Bf0 0 0 0 ABl0 0 0 0 AB|O 0 O ©
ABl0 0o 0 0 AB|l0 0 0 o0 AB|O0 0 0 o0
4Bl 11D 4B|o o B D dD
AB|O0 0 0 0 AB| 0 0O ' ABlG0 0 0 0

(a) (b) (c)

Examples of quads

Here is why a quad eliminates two variables and their complements. Visualize the four 1s of
Fig. 3.13a as two pairs (see Fig. 3.13c). The first pair represents ABC ; the second pair stands for ABC. The
Boolean equation for these two pairs is

Y = ABC + ABC
This factors into _
Y=AB(C+ ()
which reduces to
Y=A48

So, the quad of Fig. 3.13a represents a product whose two variables and their complements have dropped
out.

A similar proof applies to any quad. You can visualize it as two pairs whose Boolean equation leads to a
single product involving only two variables or their complements. There’s no need to go through the algebra
each time. Merely step through the different Is in the quad and determine which two variables go from
complemented to uncomplemented form (or vice versa); these are the variables that drop out.

For instance, look at the quad of Fig. 3.13b. Pick any 1 as a starting point. When you move horizontally,
D is the variable that changes form. When you move vertically, B changes form. Therefore, the remaining
variables (4 and C) are the only ones appearing in the simplified product. In other words, the simplified
equation for the quad of Fig. 3.13b is

Y=4C

The Octet

Besides pairs and quads, there is one more group to adjacent 1s to look for: the octer. This is a group of eight 1s
like those of Fig. 3.14a on the next page. An octet like this eliminates three variables and their complements.
Here’s why. Visualize the octet as two quads (see Fig. 3.14b), The equation for these two quads is

Y=AC +AC
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Ch Cp CD CD cD CD CD CD
ABlo 0 0 0O ABl0 0 0 0
ABl0 0 0 0 0 0
AB 1 1 1 1
AB S 1 1

Example of octet

After factoring,
Y=A(C +O)
But this reduces to
Y=4
So the octet of Fig. 3.14a means three variables and their complements drop out of the correspondmg

product.

A similar proof applies to any octet. From now on don’t bother with the algebra. Merely step through the
1s of the octet and determine which three variables change form. These are the variables that drop out. ’

- 8 OnaKamanghmap,
9 OnaK.amaughmap,

3.5 KARNAUGH SIMPLIFICATIONS

As you know, a pair eliminates one variable and its complement, a quad eliminates two variables and their
complements, and an octet eliminates three variables and their complements. Because of this, after you draw
a Karnaugh map, encircle the octets first, the

quads second, and the pairs last. In this way, the D (D CD CD b €D €D €D

greatest simplification results. 4810 1 1 1 a8lo D
ABi0 0 0 1 AB

An Example
AB| 1 i 0 1 AB ([l 1

Suppose you have translate:d a ltruth table ¥nto Gl 1 o0 1 a3 1

the Karnaugh map shown in Fig. 3.15a. First,

look for octets. There are none. Next, look for (a)

quads. When you find them, encircle them. Fi-
nally, look for and encircle pairs. If you do this
correctly, you arrive at Fig. 3.15b.

The pair represents the simplified product A BD, the lower quad stands for AC and the quad on the right
represents CD . By ORing these simplified products, we get the Boolean equation corresponding to the entire

Encircling octets, quads and pairs
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Karnaugh map:
Y=ABD+AC + CD (3.25)

Overlapping Groups

You are allowed to use the same I more than once. TH Tb ¢p D &6 D ¢D D
Figure 3.16a illustrates this idea. The I representing
the fundamental product ABC D is part of the pair
and part of the octet. The simplified equation for the
overlapping groups is
Y=A+ BCD (3.26)
It is valid to encircle the 1s as shown in Fig.
3.16b, but then the isolated 1 results in a more com-
plicated equation:
Y=4+ ABCD
So, always overlap groups if possible. That is,
use the 1s more than once to get the largest groups you can.

AE|0 0 0 o
AB
AB
AB

Overlapping groups

Rolling the Map

Another thing to know about is rolling. Look at & Tp cD CD THh T ¢ D
Fig. 3.17a on the next page. The pairs result in

this equation: 4Bl 6 0 0 © fB 0 0 0 0
Y =BCD + BCD a2y 48 0 0 48 1) 0 0 (1

Visualize picking up the Karnaugh map and 48 0 0 4Bl 1 0 0 \l
rolling it so that the left side touches the rightside. 45| o¢ o o o AB|O0 0 0 0

If you are visualizing correctly, you will realize

the two pairs actually form a quad. To indicate (@) (b)
this, draw half circles around each pair, as shown
in Fig. 3.17b. From this viewpoint, the quad of
Fig. 3.17b has the equation

Rolling the Karnaugh map

Y=BD (3.28)
Why is rolling valid? Because Eq. (3.27) can be algebraically simplified to Eq. (3.28). The proof starts
with Eq. (3.27):

Y=BCD + BCD
This factors into o
Y=BD(C + C}
which reduces to .
Y=BD

But this final equation is the one that represents a rolled quad like Fig. 3.17b. Therefore, 1s on the edges
of a Kamaugh map can be grouped with 1s on opposite edges.
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More Examples

If possible, roll and overlap to get the largest

groups you can find. For instance, Fig. 3.18a b D (D (D D b D D
shows an inefficient way to encircle groups. The 4B 0 0 AB \ 0 0
octet and pair have a B_oolean _equatlon of 4B 0 4B o A
Y=C+BCD 4B 0 4B 0
. . 1
You can do better by rolling and overlapping B _

as shown in Fig. 3.18b; the Boolean equation 45 0 0 4B 0 o
now is (a) (b)

Y=C+BD
Here is another example. Figure 3.19a shows
an inefficient grouping of 1s; the corresponding
equation is

Y=C+ACD + ABCD

CD €p ¢b CD ¢h Cp ¢p CD €D Tp CD (D
' 0 AB o N i 0 1

0 AB 0 (1 0 f

0 0 AB 0o 0 0 0

0 AB| D 0 <1 0o T©

(b)

Different ways of encircling groups

If we :roll and overlap as shown in Fig. 3.19b, the equation is simpler:
Y=C +AD + ABD
It is possible to group the 1s as shown in Fig. 3.19¢c. The equation now becomes
y=C+AD+BD (3.29)
Compare this with the preceding equation. As you can see, the equations are comparable in simplicity.
Either grouping (Fig. 3.19b or c}) is valid; therefore, you can use whichever you like.

Eliminating Redundant Groups

After you have finished encircling groups, eliminate any redundant group. This is a group whose Is are
already used by other groups. Here is an example. Given Fig. 3.20a, encircle the quad to get Fig. 3.20b. Next,
group the remaining 1s into pairs by overlapping (Fig. 3.20c). In Fig. 3.20c, all the 1s of the quad are used by
the pairs. Because of this, the quad is redundant and can be eliminated to get Fig. 3.20d. As you see, all the
1s are covered by the pairs. Figure 3.20d contains one less product than Fig. 3.20c; therefore, Fig. 3.20d is
the most efficient way to group the 1s.
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¢D CDh ¢D CD CD Tp ¢b ¢b CD Cb ¢D D CD Cb D CD
ABl 0O 0 1 0 6 0 0 ABl 0 0 0
A4B11 1 1 o0 1 1 0 AB 0
AB 11 0 1 AB| 0 a D
4810 1 0 0 0 1 0 AB| 0 @ 0 0
(@) (d)
Conclusion

Here is a summary of the Karnaugh-map method for simplifying Boolean equations:

1. Enter a 1 on the Kamaugh map for each fundamental product that produces a 1 output in the truth
table. Enter Os elsewhere.

Encircle the octets, quads, and pairs. Remember to roll and overlap 1o get the largest groups possible.
If any isolated 1s remain, encircle each.

Eliminate any redundant group.

Write the Boolean equation by ORing the products corresponding to the encircled groups.

SENCE

Simplification of Entered Variable Map

This is similar to Karnaugh map method. Refer to entered variable maps shown in Fig. 3.10. The groupings
for these are as shown in Fig. 3.21a and Fig. 3.21b. Note that in Fig. 3.21a C’ is grouped with 1 to get a larger
group as 1 can be written as 1 =1+ C”. Similarly 4 is grouped with 1 in Fig. 3.21b.

Next, the product term representing each group C 3 B
is obtained by including map entered variable in the = -
group as an additional ANDed term. Thus, group 1 of B 6 410
Fig. 3.21a gives B.(C")= BC’ and group 2 givesAB.(1) B @ 4
= AB resulting Y=BC’ + AB.

In Fig. 3.21b, group 1 gives product term 8.(4) = 4B (a) (b) (©)
and group 2 gives BC’.(1) = BC” so that Y= BC” + AB,
The final expression is same for both as they represent Simplification of entered
the same truth table (Table 3.6). variable map

Note that, entered variable map shown Fig. 3.21¢
for a different truth table (Take it as an exercise to prepare that truth table) has only two product terms and
doesn’t need a separate coverage of 1. This is because one can write ] = C+ C"and Cis included in one group
while C” in other. The output of this map can be written as ¥ = AC + BC”,

o |

4

o o Wl

SE

What is the simplified Boolean equation for the following logic equation expressed by
minterms?

Y=F(4,B,C,D)=Em(7,9, 10, 11, 12, 13, 14, 15)
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Solution We know, each minterta makes corresponding location in Kamaugh map | and thus Fig. 3.22a represcnts
the given equation. There are no octets, but tkiere is a quad as shown in Fig. 3.22b. By overlapping, we can find two
more quads (see Fig. 3.22c). We can encircle the remaining 1 by making it part of an overlapped pair (Fig. 3.22d).
Finally, there are no redundant groups.

The horizontal quad of Fig. 3.22d corresponds to a simplified product AB. The square quad on the right corresponds
to AC, while the one on the left stands for AD. The pair represents BCD. By ORing these products, we get the
simplified Boolean equation:

7 Y=AB+AC+AD+BCD ' (3.30)
D Cb €D CD TH €D €D CD CD €D ¢D D ¢H Tp ¢D (D
4Bl 0 0 0.0 ABlo o 0 o A8l 0 o o0 o ABjo0o 0 0 O
AaBjo o 1 0 4Bl o 0 1.0 AB| 0 0
481 1 1 1 4B 4B
ABlo 11 1. 4B| AB
© g

10. Write the sum-of-prodict

3.6 DON’ T-CARE CONDITIONS Truth Table with Don’t-

Care Conditions

In some digital systems, certain input conditions
never occur during normal operation; therefore, the
corresponding output never appears. Since the output
never appears, it is indicated by an X in the truth table.
For instance, Table 3.8 on the next page shows a truth
table where the output is low for all input entries from
0000 to 1000, high for input entry 1001, and an X
for 1010 through 1111. The X is called a don t-care
condition. Whenever you see an X in a truth table, you
can let it equal either 0 or 1, whichever produces a
simpler logic circuit.

Figure 3.23a shows the Karnaugh map of Table
3.8 with don’t-cares for all inputs from 1010 to 1111.
These don’t-cares are like wild cards in poker because
you can let them stand for whatever you like. Figure
3.23b shows the most efficient way to encircle the 1.
Notice two crucial ideas. First, the 1 is included in a

-

i e, _. O SO DO O N

O Y X T = . 1%

»—-;—-—-—-Occo—-.—-—-;—-cocaw
D e D O e D e D e O O
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quad, the largest group you can find if you visualize all X’s as Is, Second, afier the 1 has been encircled,
all X’s outside the quad are visualized as 0s. In this way, the X7s are used to the best possible advantage, As
already mentioned, you are free to do this because don’t-cares correspond to input conditions that never ap-
pear.

The quad of Fig. 3.23b results in a Boolean equation of
Y=4D
The logic circuit for this is an AND gate with inputs of A and D, as shown in Fig. 3.23¢. You can check

this logic circuit by examining Table 3.8. The possible inputs are from 0000 to 1001; in this range a high 4
and a high D produce a high ¥ only for input condition 1001.

€D CDh Cp CD Cb ¢p ¢ ¢b
ABl 0 0 0 o AB| 0 0 © o
A8 0 0 0 0 ABl 0 0 © o0

—

————

%.’h
|
=
x
x
<N
e
L=

X X X x AB| x | x :)—Y
B X

(a) (b (c)

Don't-care conditions

Remember these ideas about don’t-care conditions:

1. Given the truth table, draw a Karnaugh map with 0s, 1s, and don’t-cares.

2. Encircle the actual 1s on the Karraugh map in the largest groups you can find by treating the don’t-
cares as 1s.

3. After the actual 1s have been included in groups, disregard the remaining don’t cares by visualizing
them as 0s.

Suppose Table 3.8 has high output for an input of 0000, low output, for 0001 te 1001, and
don’t cares for 1010 to 1111. What is the simplest logic circuit with this truth table?

Solution The truth table has a | output only B TD D B
for the inputcondition 0000. The corresponding ' -

, Wmugc;is ZEEI?);h. Fig;xr:lfl:h':' 4B @ e 0. 0 ABCDH
ows the ugh map with a 1 for -~
fundamental product, 0s for inputs 0001 to 48| 0 : _0 00 l_ D._ Y
1001, and Xs for inputs 1010 to 1111. Inthis' A4B| x x x x I
case, the don’t-cares are of no help. The best ABl 0. 0 x % i
we can do is to encircle the isolated 1, while . _ _
treating the don’t-cares as 0s. So, the Boolean (a) )
equation is
Y=ABCD Decoding 0000

Figure 3.24b shows the logic circuit. The 4- : _
input AND gate produces a high output only for the input condition 4 = 0, B=0. C = 0,and D=0.
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Give the simplest logic circuit for following logic equation where d represents don’t-care
condition for following locations.

F(A, B, C,Dy=Zm(T) +d(10, 11, 12, 13, 14, 15)

Solution Figure 3.25a is the Karnaugh map. ch
The most éfficient encircling is to group the 1s
into a pair using the don’t-care as shown, Since
this is the largest group possible, all remaining
don’t cares are treated as 0s. The equation for the
pair is '

4 B CD

cD
0
0
x

a1

 Y=BCD

and Fig. 3.25b is the logic circuit. This 3.input
AND gate produces a high otitput only for an i
putof4=0,B=1,C=1,and D =1 because
the input possibilities range only from 6080 to
1001.

X

(@) ®)

® s E

Decoding 0111

(Q2SELETESD)

don’t-care conditiom on a Kamaugh map? How ls it indicated?

11 Whatis meant by & don't-care condition on
12. How can using don’t-cares aid circuit simplification? .

3.7 PRODUCT-OF-SUMS METHOD'

With the sum-of-products method the design starts with a truth table that summarizes the desired input-output
conditions. The next step is to convert the truth table into an equivalent sum-of-products equation. The final
step is to draw the AND-OR network or its NAND-NAND equivalent.

The product-of-sums method is similar. Given a truth table, you identify the fundamental sums needed
for a logic design. Then by ANDing these sums, you get the product-of-sums equation corresponding to the
truth table. But there are some differences between the two approaches. With the sum-of-products method,
the fundamental product produces an output 1 for the corresponding input condition. But with the product-
of-sums method, the fundamental sum produces an output 0 for the corresponding input condition. The best
way to understand this distinction is with an example.

Converting a Truth Table to an Equation

Suppose you are given a truth table like Table 3.9 and you want to get the product-of-sums equation. What
you have to do is locate each output 0 in the truth table and write down its fundamental sum. In Table 3.9, the
first output 0 appears for 4 = 0, 8 =0, and C = 0. The fundamental sum for these inputs is 4 + B+ C. Why?
Because this produces an output zero for the corresponding input condition:

Y=A4A+B+(C=0+0+0=0
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A B C Maxterm
0 0 0 My
0 0 1 1 My
0 1 6 1 My
0 1 1 0> A+B+C My
1. 0 0 1 M,
S 0 1 1 _ M
e I 0 05 A+B+C T Mg
1 1 1 1 My

The second output ( appears for the input condition of 4 =0, B= 1, and C = 1. The fundamental sum for
this is 4 + B + C . Notice that B and C are complemented because this is the only way to get a logical sum
of 0 for the given input conditions: 5

Y=A+B+C=0+1+1=040+0=0
_ Similarly, the third output 0 occurs for 4 = 1, B = 1, and C = 0; therefore, its fundamental sum is
A+B+C:

Y=A+B+C=1+1+0=0+0+0=0

Table 3.9 shows all the fundamental sums needed to implement the truth table. Notice that each variable is
complemented when the corresponding input variable is a 1; the variable is uncomplemented when the corre-
sponding input variable is 0. To get the product-of-sums equation, all you have to do is AND the fundamental
sums:

Y=(A+B+C)A+B+CYA+B+C) (3.31)
This is the product-of-sums equation for Table 3.9.
As each product term was called minterm in SOP representation in POS each sum term is called maxterm
and is designated by M; as shown in Table 3.9. Equation 3.31 in terms of maxterm can be represented as
Y =F(4, B8, C)=IIM(0, 3, 6)

where ‘IT" symbolizes product, i.e. AND operation. This kind of representation of a truth table is also known
as canonical product form.,

Logic Circuit

After you have a product-of-sums equation, you can get the logic circuit by drawing an OR-AND network,
or if you prefer, a NOR-NOR network. In Eq. (3.31) each sum represents the output of a 3-input OR gate.
Furthermore, the logical product Y is the output of a 3-input AND gate. Therefore, you can draw the logic
circuit as shown in Fig. 3,26,

A 3-input OR gate is not available as a TTL chip. So, the circuit of Fig. 3.26 is not practical. With De
Morgan’s first theorem, however, you can replace the OR-AND circuit of Fig. 3.26 by the NOR-NOR circuit
of Fig. 3.27.
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Conversion between SOP and POS

We have seen that SOP representation is obtained by considering ones in a truth table while POS comes
considering zeros, In SOP, each one at output gives one AND term which is finally ORed. In POS, each zero

Eives one OR term which is finally ANDed. Thus SOP and POS occupy complementary locations in a truth
table and one representation can be obtained from the other by
(1) identifying complementary locations,

(ii) changing minterm to maxterm or reverse, and finally
(iii) changing summation by product or reverse.

Thus Table 3.9 can be represented as
Y=F(4,B, C)=TIM(0,3,6)=Zm(1,2,4,5,7)
Similarly Table 3.4 can be represented as
Y=F(,B,C)=Zm(3,56,7)=IIM(0,1,2,4)

This is also known as conversion between canonical forms.

(4 : j Example 3.97) Suppose a truth table has a low output for the first three input conditions: 000, 001, and 010.
If all other outputs are !:ugh what is the product-of-sums circuit?

Soﬁaﬁon Thepmdwct%snmseqﬁwonm

g _B*C@(A+B+c)(4+s+c)’.,f
'{hecmtof’flg 3, ﬂwm.wmk 1fWerecmnwtfkemput lines ai follows: -

. A:pinsl,3, ad9

i B: Plnsz.andét.

ol Crpind 13 and 13

S H pinl0

o Eipins
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13. A produc:t-of-mnhs’ expression leads to what kind of logic circuit?
14. Explain how to convert the complementary NAND-NAND circuit into its dual NOR-NOR
circuit.- < ' : )

b &

3.8 PRODUCT-OF-SUMS SIMPLIFICATION

After you write a product-of-sums equation, you can simplify it with Boolean algebra. Alternatively, you
may prefer simplification based on the Karnaugh map. There are several ways of using the Karnaugh map.
One can use a similar technique as followed in SOP representation but by forming largest group of zeres and
then replacing each group by a sum term. The variable going in the formation of sum term is inverted if it
remains constant with a value 1 in the group and it is not inverted if that value is 0. Finally, all the sum terms
are ANDed to get simplest POS form. We illustrate this in Examples 3.11 and 3.12. In this section we also
present an interesting alternative to above technique.,

Sum-of-Products Circuit

Suppose the design starts with a truth table like Table 3.10. The first thing to do is to draw the Karnaugh map
in the usual way to get Fig. 3.28a. The encircled groups allow us to write a sum-of-products equation:

Y=AB +AB+AC
Figure 3.28b shows the corresponding NAND-NAND circuit.

Complementary Circuit

To get a product-of-sums circuit, begin by comple-
menting each 0 and 1 on the Karnaugh map of Fig.
3.28a, This results in the complemented map shown

in Fig. 3.28c. The encircled 1s allow us to write the 4. B . D Y
following sum-of-products equation: g 0 g (1) _ ; )
- - —— 0. . 0 _ ;v
Y=AB+ ABC ‘o 0 T 0 g
Why is this ¥ instead of Y? Because complement- 0 0 1 1 1
ing the Karnaugh map is the same as complementing 0 l sl 0 o
the output of the truth table, which means the sum-of- 0 1 0 1 0
products equation for Fig. 3.28¢ is for ¥ instead of ¥, .0 : 1 = 0 0
Figure 3.28d shows the corresponding NAND- [1) [1) (l, - (l) g
NAND circuit for ¥ . This circuit does not produce P 0 0 1 0
the desired output; it produces the complement of the R 0 R 0 1
desired output. 1 0 B 1 1
L 1 0 0 1
Finding the NOR-NOR Circuit 1 1 0 1 1
What we want to do next is to get the product-of-sums i : i i (l) :

solution, the NOR-NOR circuit that produces the
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Deriving the sum-of-products circuit

original truth table of Table 3.10. De Morgan’s first theorem tells us NAND gates can be replaced by bubbled
OR gates; therefore, we can replace Fig. 3.28d by Fig. 3.29a. A bus with each variable and its complement
is usually available in a digital system. So, instead of connecting A and B to a bubbled OR gate, as shown
in Fig. 3.29a, we can connect 4 and B to an OR gate, as shown in Fig. 3.29b. In a similar way, instead of
connecting A, B, and C to a bubbled OR gate, we have connected A, B, and C to an OR gate. In short,
Fig. 3.29b is equivalent to Fig. 3.29a.

The next step toward a NOR-NOR circuit is to convert Fig. 3.29b into Fig. 3.29¢, which is done by sliding
the bubbles to the left from the output gate to the input gates. This changes the input OR gates to NOR gates.
The final step is to use a NOR gate on the output to produce Y instead of Y , as shown in the NOR-NOR
circuit of Fig. 3.29d.

o
=l

ol =
=il

o {1--11N
(91~

(a) (b)

Oyt Wl
=~
Ol Wl
~d

(4

Deriving the product-of-sums circuit
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From now on, you don’t have to go through every step in changing a complementary NAND-NAND
circuit to an equivalent NOR-NOR circuit. Instead, you can apply the duality theorem as described in the
following.

Duality

An earlier section introduced the duality theorem of Boolean algebra. Now we are ready to apply this theo-
rem to logic circuits. Given a logic circuit, we can find its dual circuit as follows: Change each AND gate to
an OR gate, change each OR gate to an AND gate, and complement all input-output signals. An equivalent
statement of duality is this: Change each NAND gate to a NOR gate, change each NOR gate to a NAND gate,
and complement all input-output signals.

Compare the NOR-NOR circuit of Fig. 3.29d with the NAND-NAND circuit of Fig. 3.28d. NOR gates
have replaced NAND gates. Furthermore, all input and output signals have been complemented. This is an
application of the duality theorem. From now on, you can change a complementary NAND-NAND circuit
(Fig. 3.28d) into its dual NOR-NOR circuit (Fig. 3.29d) by changing all NAND gates to NOR gates and
complementing all signals.

Points to Remember

Here is a summary of the key ideas in the preceding discussion:

1. Convert the truth table into a Karnaugh map. After grouping the 1s, write the sum-of-products
equation and draw the NAND-NAND circuit. This is the sum-of-products solution for ¥,

2. Complement the Karnaugh map. Group the 1s, write the sum-of-products equation, and draw the
NAND-NAND circuit for ¥ . This is the complementary NAND-NAND circuil.

3. Convert the complementary NAND-NAND circuit to a dual NOR-NOR circuit by changing all
NAND gates to NOR gates and complementing all signals, What remains is the product-of-sums
solution for Y.

4. Compare the NAND-NAND circuit (Step 1) with the NOR-NOR circuit (Step 3). You can use
whichever circuit you prefer, usually the one with fewer gates.

Show the sum-of-products and product-of-sums circuits for the Kamaugh map of Fig, 3.30a.

Solution The Boolean equation for Fig. 3.30a on the next page is
Y=4+BCD

Figure 3.30b is the sum-of-products circuit.
After complementing and simplifying the Karnaugh map, we get Fig. 3.30c. The Boolean equation for this is

Y=AB+AC +AD
Figure 3.30d is the sum-of-products circuit for the ¥ . As shown earlier, we can convert the dual circuit into a NOR-

NOR equivalent circuit to get Fig. 3.30e.
The two design choices are Fig. 3.30b and 3.30e. Figure 3.30b is simpler.
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) Give simplest POS form of Karnaugh map shown in Fig. 3.30a by grouping zeros.

Solution Refer to grouping of zeros as shown in Fig, 3.31a. Three groups cover all the zeros that give three sum

terms. The first group has 4" and C’ constant with-
in the group that gives sum term (4 + C). Group 2
has 4’ and D constant giving sum term {4 + D).
Group 3 has A’ and B’ constant generating (4 + B)
as sum term.
The final solution is thus product of these three
sum terms and expressed as

Y=(A+B)(4+C)(4+D)

Note that, the above relation can be realized by
OR-AND circuit or NOR-NOR (Fig. 3.30¢) cir-
cuit.

CD Cp ¢b €D €D Tp ¢ CD
BlCANND B[ o)1 @
4B Wﬂ 4B 11
AB] 1 1 1 1 AB x 1
ABl 1 1 1 1 AB |, ® x @

(a) b)

Simplification by grouping zeros

Give simplest POS form of Karnaugh map shown in Fig. 3.31b by grouping zeros.

Solution Tn a Karnaugh map if don’t care conditions exist, we may consider them as zeros if that gives targer group
size. This in tum reduces number of literals in the sum term. Refer to grouping of zeros in Fig. 3.31b. We require
minimum two groups that includes all the zeros and are also largest in sizes. In group 1, only C is constant that gives
only one literal in sum term as . Group 2 has B’ and [ constant giving sum term (B + ). The final solution is thus

product of these two sum terms and expressed as

Y=C(B+D)
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. 3.9 SIMPLIFICATION BY QUINE-McCLUSKY METHOD '

Reduction of logic equation by Karnaugh map method though very simple and intuitively appealing is some-
what subjective. It depends on the user’s ability to identify patterns that gives largest size. Also the method
becomes difficult to adapt for simplification of 5 or more variables. Quine-McClusky method is a systematic
approach for logic simplification that does not have these limitations and also can easily be implemented in
a digital computer.

'lﬁetermination of Prime Implicants

" Quine-McClusky method involves preparation of two tables; one determines prime implicants and the other
selects essential prime implicants to get minimal expression. Prime implicants are expressions with least
number of literals that represents all the terms given in a truth table. Prime implicants are examined to get
essential prime implicants for a particular expression that avoids any type of duplication. We iilustrate the
method with a 4-variable simplification problem for truth table appearing in Table 3.10. Figure 3.32 shows
prime implicant determination table for the problem.

In Stage 1 of the process, we find out all the terms that gives output I from truth table (Table 3.10) and put
them in different groups depending on how many 1 input variable combinations (4BCD) have. For example,
first group has no 1 in input combination, second group has only one 1, third two 1s, fourth three 1s and fifth
four 1s. We also write decimal equivalent of each combination to their right for convenience.

In Stage 2, we first try to combine first and second group of Stage 1, on a member to member basis.
The rule is to see if only one binary digit is differing between two members and we mark that position by

Stage 1 Stage 2 Stage 3

ABCD ABCD ABCD

0000 (oW | 000- (0, 1)V 00-- (0,1,2,3)
00-0 (0,2)¥ 00-- (0,2,1,3)

0001 (1

0010 @y | 00-1 (1,30 -01- (2,10,3,11)
f’gll(; gfé\;\, 1-1- (10,11,14,15)

0011 (W ’ 1-1- (10,14,11,15)

1010 aoy | —o11 (3,11 I1-- (12,13,14,15)

1100 (12w 101- (10,11)V Lr-- (12,14,13,15)
1-10 (10,140
110- (12,13)¥

1011 (DY | t1-0 (12,140

1101 (13 ‘

1110 (14 | 1-11 (11,15)¥
11-1 (13,15

1111 s | 111- (14,15

Determination of prime implicants
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“_*, This means corresponding variable is not required to represent those members. Thus (0) of first group
combines with (1) of second group to form (0,1) in Stage 2 and can be represented by A’B'C" (00 0 -). The
logic of this representation comes from the fact that minterm A'B'C'DY (0) and A’B’C'D (1) can be combined
as A'B'C'(D’ + D) = A’B'C". We proceed in the same manner to find rest of the combinations in successive
groups of Stage 1 and table them in Fig. 3.32. Note that, we need not look beyond successive groups to find
such combinations as groups that are not adjacent, differ by more than one binary digit. Also note that each
combination of Stage 2 can be represented by three literals. All the members of particular stage, which finds
itself in at least one combination of next stage are tick () marked. This is followed for Stage 1 terms as well
as terms of other stages.

In Stage 3, we combine members of different groups of Stage 2 in a similar way. Now it will have two ‘-’
elements in each combination. This means each combination requires two literals to represent it. For example
(0,1,2,3) is represented by 4’B’ (0 0 — ). There are three other groups in Stage 3; (2,10,3,11) represented by
B'C,(10,14,11,15) by AC and (12,13,14,15) by AB. Note that, (0,2,1,3), (10,11,14,15) and (12,14,13,15) get
represented by 4’B, AC and 4B respectively and do not give any new term.

There is no Stage 4 for this problem as no two members of Stage 3 has only one digit changing among
them. This completes the process of determination of prime implicants. The rule is all the terms that are not
ticked at any stage is treated as prime implicants for that problem. Here, we get four of them from Stage 3,
namely A’B’, B'C, AC, AB and none from previous stage as all the terms there are ticked (V).

Selection of Prime tmplicants

Once we are able to determine prime implicants that covers all the terms of a truth table we try to select es-
sential prime implicants and remove redundancy or duplication among them. For this, we prepare a table as
shown in Table 3.11 that along the row lists all the prime implicants and along columns lists all minterms.
The cross-point of a row and column is ticked if the term is covered by corresponding prime implicant. For
example, terms 0 and 1 are covered by 4’B” only while 2 and 3 are covered by both 4’B’ and B'C and the cor-
responding cross-points are ticked. This way we complete the table for rest of the terms.

0 1 1 12 13 14 15
A'B (0,1,2,3) ¥ v '
B'C(23,10,11) N
AC (10,11,14,15) v v v
AB(12,13,14,15) J N J J

Selection of essential prime implicants from this table is done in the following way. We find minimum
number of prime implicants that covers all the minterms. We find A’B’ and AB cover terms that are not cov-
ered by others and they are essential prime implicants. B’C and AC among themselves cover 10,11 which are
not covered by others. So, one of them has to be included in the list of essential prime implicants making it
three. And the simplified representation of truth table given in Table 3.10 is one of the following

Y=AB+BC+ABorY=A'B' +AC+AB
Simplification of the same truth table by Karnaugh map method is shown in Fig. 3.28a and we see the
results are the same.
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Now, how do you compare the complexity of this approach with Karnaugh map groupings? Yes, this
method is more tedious and monotonous compared to Kamaugh map method and people don’t prefer it
for simplification problems with smaller number of variables. However, as we have mentioned before, for
simplification problems with large number of variables Quine-McClusky method can offer solution and

Karnaugh map does not.

Give simplified logic equation of Table 3.6 by Quine-McClusky method.

Solution Tables that determine prime implicants and selects essential prime implicants are shown in Figs.3.33a and
3.33b respectively. We find both the prime implicants are essential prime implicants. The simplified logic equation

thus is expressed as

Y=48+BC
Note that, we got the same expression by simplification entered variable map shown in F igs. 3.22a and 3.22b.
tage | Stage 2
ABC ABC
010 v | -10 (2.6}
116 6 |11- 67
111 (7N
(a)
2 6 7
BC’ (2.6) ¥ <
4B (6,7) _ VoW
(b)

Simplification by Quine-McClusky method for Example 3.14

GSHETED

15. What is a prime implicant?
16. What are the advantages of Quine-McClusky method?

. 3.10 HAZARDS AND HAZARD COVERS .

In past few sections we have discussed in detail various simplification techniques that give minimal expres-
sion for a logic equation which in turn requires minimum hardware for realization of that. [t may sound off-

beat, but due to some practical problems, in certain cases we ma

by simplification techniques. The discussion so far considered gates generating outputs instantaneously. But

y prefer to include more terms than given



Combinational Logic Circuits @

practical circuits always offer finite propagation delay though very small, in nanosecond order. This gives rise
to several hazards and hazard covers are additional terms in an equation that prevents occurring of them. In
this section, we discuss this problem and its solution.

Static-1 Hazard

This type of hazard occurs when Y= 4 + 4" type of situation appears for a logic circuit for certain combination
of other inputs and A makes a transition 1 — 0. An 4 + 4" condition should always generate ! at the output,
i.e. static-1. But the NOT gate output (Fig. 3.34a) takes finite time to become 1 following 1 — O transition of
A. Thus for the OR gate there are two zeros appearing at its input for that small duration, resulting a 0 at its
output (Fig. 3.34b). The width of this zero is in nanosecond order and is called a glitch. For combinational
circuits it may go unnoticed but in sequential circuit, more particularly in asynchronous sequential circuit
(discussed in Chapter 11) it may cause major malfunctioning.

A —

! 7, = NOT gate delay
7, = OR gate delay

_..grl lt—

| T =

(b)

Static-1 hazard

To discuss how we cover static-1 hazard let’s look at one example. Refer to Karnaugh map
shown in Fig. 3.35a, which is minimally represented by Y = BC" + AC. The corresponding circuit
is shown in Fig. 3.35b. Consider, for this circuit input 8 =1 and 4 = 1 and then C makes transition
1— 0. The output shows glitch as discussed above. Consider another grouping for the same map in Fig.
3.35¢. This includes one additional term 48 and now output ¥ = BC' + AC + AB. The corresponding circuit
diagram is shown in Fig. 3.35d. This circuit though require more hardware than minimal representation, is
hazard free. The additional term AB ensures Y'=1 for 4 = 1, B =1 through the third input of final OR gate and
a 1 —» 0 transition at C does not affect output. Note that, there is no other hazard possibility and inclusion of
hazard cover does not alter the truth table in anyway.

e (T
4B| 0 A— aBlo o € '
0

C

0
AB 0 AB B D_:D_
AB @ B T Y
AB| O @ C AB| 0 D__

(a) Y=BC+ AC (b) Circuit with static-1 hazard  (¢) ¥ =BC+ AC+ 48 (d) Hazard free circuit

Static-1 hazard and its cover
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Again, a NAND gate with 4 and A’ connected at its input for certain input combination will give static-1
hazard when 4 makes a transition 0 — 1 and requires hazard cover.

Static-0 Hazard

This type of hazard occurs when ¥ = 4.4’ kind of situation occurs in a logic circuit for certain combination
of other inputs and 4 makes a transition 0 — 1. An 4.4’ condition should always generate 0 at the output,
i.e. static-0. But the NOT gate output (Fig. 3.36a) takes finite time to become 0 following a 0 — 1 transition
of A. Thus for final AND gate there are two ones appearing at its input for a small duration resuiting a 1 at its
output (Fig. 3.36b). This ¥'= 1 occurs for a very small duration (few nanosecond) but may cause malfunction-
ing of sequential circuit.

4 — T; = NOT gate delay
A i 7, = OR gate delay
A T e
Y I
Ll — ——
A

(a)

Again, we take an example to discuss how we can prevent static-0 hazard. We use the same
truth table as shown in Fig. 3.35a but form group of 0s such that a POS form results. Figure 3.37a
shows the minimal cover in POS form that gives ¥ = (B + C)(A + () and corresponding circuit in
Fig. 3.37b. Butif B=0, 4 = 0 and C makes a transition 0—>1 there will be static-0 hazard occurring at output,
To prevent this we add one additional group, i.e. one more sum term (4 + B) as shown in Fig. 3.37¢c and the
corresponding circuit is shown in Fig. 3.37d. The additional term (4 + B) ensures Y =0 for 4 =0, B=0
through the third input of final AND gate and a 0 — | transition at C does not affect output. Again note that
for this circuit there is no other hazard possibility and inclusion of hazard cover does not alter the truth table

in anyway.

A
Y B— D_Y
C
(a) Y=(B+C) {b) Circuit with static-0 hazard {c) Y =(B+C} (4+C) (d) Hazard free circuit
(A+C) (4+B)

Static-1 hazard and its cover

Also note, a NOR gate with 4 and 4’ connected at its input for certain input combination will give static-0
hazard when 4 makes a transition 1— 0 and requires hazard cover.
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Dynamic Hazard

Dynamic hazard occurs when circuit output makes multiple transitions before it settles to a final value
while the logic equation asks for only one transition. An output transition designed as 1 — 0 may give
1 - 0 — 1 — 0 when such hazard occurs and a 0 —1 can behave like 0 — 1 — 0 — 1. The output of logic
equation in dynamic hazard degenerates into ¥ =4 + A4".4 ot Y = (4 + 4").4 kind of relations for certain
combinations of the other input variables. As shown by these equations, these occur in multilevel circuits
having implicit static-1 and/or static-0 hazards. Providing covers to each one of them dynamic hazard can be
prevented.

4 ) Check if the circuit shown in Fig. 3.38a exhibit dynamic hazard. Show how output varies
with time if dynamic hazard occurs. Consider all the gates have equal propagation delay of 7
nanosecond. Also mention how the hazard can be prevented.

Sohition "The logic ¢ircnit can'bé written i the form of equation as Y= (4.C+ B.C').C". Clearly ford =1,B=1 we
get ¥= (C+ C).C which shmpoteﬁtml dynamic hiazard with an implicit static-1 hazard. Figure 3.38b shows how
a transition | 0 at input C for #B= 11-¢auses dynamic hazard at the output.”

‘The hazard cart be prevented by using anidditional two mput AND gate fed by input A and B and replacing two in-
put OR gate by a thrée input OR gate. The additional (third) input of OR gate will be fed by output of the new AND
gate. . : ) ‘

CA’¢—'~‘High,B=High
TR 7= Each gate delay
S O I
: R B
Y1-——--1:--4--~ i i |
———— H ! !
™ R
’ : ] [] 1
AR I
3 t
Y : : o 3
T i
¥ 1 !
P
¥ I
...... f : oy 1 3
t=0 v 2t 3t 4t
(b)

‘Example of dynamic hazard

17. Whatis static-O hazard?
18, ‘What s dynamic hazard?
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. 3.11 HDL IMPLEMENTATION MODELS '

We continue our discussion of Verilog HDL description for a digital logic circuit from Chapter 2, Section
2.5. We have seen how structural gate level modeling easily maps a digital circuit and replicates graphica}
symbolic representation. We have also seen how a simple test bench can be prepared to test a designed circuit.
There, we generated all possible combinations of input variables and passed it to a circuit to be tested by
providing realistic gate delays. We’ll follow similar test bench but more ways to describe a digital circuit in
this and subsequent chapters.

Dataflow Modeling

Gate level modeling, though very convenient to get started with an HDL, consumes more space in describing
a circuit and is unsuitabie for large, complex design. Verilog provides a keyword assign and a set of opera-
tors (partial list given in Table 3.11, some operations will be explained in later chapters) to describe a circuit
through its behavior or function. Here, we do not explicitly need to define any gate structure using and, or
etc. and it is not necessary to use intermediate variables through wire showing gate level interconnections.
Verilog compiler handles this while compiling such a model. All assign statements are concurrent, i.e. order
in which they appear do not matter and also continuous, i.e. any change in a variable in the right hand side
will immediately effect left hand side output.

(@3 Table 3.12 ) A Partial List of Verilog Operator

Relational Operation . K Symbol Symbol
Less than ' : ' < N
Less than or equal to e <= &
Greaterthan . o ' > |
Equal to . = "
Notequalto - 1=

Logical Opention (for mq)msswns) Symbol Symbol
Logical NOT ! i Bmalysubmtmn CE -
Logical AND && ‘Binary multiplication *
Logical OR I ~. Binary dmsaon D : /

Now, we look at data flow model of two circuits shown in Fig. 2.17a and Fig. 2.38. We compare these
codes with gate level model code presented in Section 2.5 and note the advantage. We see that data flow
model resembles a logic equation and thus gives a more crisp representation.

module fig2 24a(A,B,C,D,Y);  module testckt (afb G X:Y}r B
input A,B,C,D; input-a,b,c; LRI I

coutput Yio o : output: x,y;i :
assign Y=(A&B) | (C&D); assign x=~({a|b) {c} ‘N&R mrough NOT-—OR
//One statement is enough “assign y—-~((atb3&

CAND*/

endmodule andmodule
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In a behavioral model, statements are executed sequentially following algorithmic description. It is ideaily
suited to describe a sequential logic circuit. However, it is also possible to describe combinatorial circuits
with this but may not be a preferred model in most of the occasions. It always uses always keyword followed
by a sensitivity list. The procedural statements following always is executed only if any variable within
sensitivity list changes its value. Procedure assignment or output variables within always must be of register
type, defined by reg which unlike wire is not continuously updated but only afier a new value is assigned to
it. Note that, wire variables can only be read and not assigned to in any procedural block, also it cannot store
any value and must be continuously driven by output or assign statement.

Now, let us try to write behavioral code for circuit given in Fig. 2.17a. We note that, ¥ = A8 + CD, i.e.
Y=1if AB =11 or if CD = 11, otherwise ¥ = 0. We use if...else if...else construct to describe this circuit.
Here, the conditional expression after if, if true executes one set of instructions else executes a different set
following else or none at all.

Behavioral Modeling

243 (R, B,C,D,Y);
e entel

t -éfté’r pijogégdﬁral a_s.éighmen-t within always

Dfarm s“en_s.i"t'i\viixt}{ list, note keyword

g equal sign not keyword assign

B

You can compare how logic circuit described in Fig. 2.17a is realized in Verilog HDL following three
different models two of which are described in this chapter and one in previous chapter. One might find
data flow model more convenient to use for combinatorial circuits. We’ll learn more about it in subsequent
chapters.

Note that, ~ operator has higher precedence over & and |; while & and | are at same level. To avoid confu-
sion and improve readability it is always advised to use parentheses (...) that has second highest precedence
below bit select [...].
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The test bench for all the examples described in this chapter can be prepared in a manner similar to what
is described in Chapter 2. A simpler HDL representation to prepare a test bench will be discussed in Chapter

PROBLEM SOLVING WITH MULTIPLE METHODS

Get a minimized expressionfor Y=F(4,B,C)=A B BC+ABC+ ABC+ABC

Solufioh We can solve this using Boolean Algebra, Karnaugh Map, Entered V&riaiwlc Map and oM Algonthm

In Method-1  We take help of Boolean Algebra for minimization. We see that A BC can be combined
with all three terms using distributive law (Eq.'3.5) '

Since, in Boolean algebra X = X + X + X (extending Ey. 37)wccanwnte et

Y= ABC+(ABC+ABC+ABC)+ABC+ABC "
From associative law (Eq. 3.3) )

Y= (ABC+ABC)+(ABC+ABC)+(ABC+ABQ
From distributive law (Eq.3.5) . . S

Y= AB(C +C)+AC(B +B)+BC(A +A)
FromEq 39 smceX+X—1 e S :
Y=Z§ 1+-XC“1+§C'1 _
" =AB+AcY+ BC (since, X 1= 'Xﬁ'omEq 319}

In Method-2, we use Kamaugh Map for mammzzatlon F1g 3. 39 shows the solutzon by ﬂns meth—
od. ;

T e ]

e D OO O R
—_—— O D e e O by
-y S e

=

Y=AB+AC+BC

m Solution using Ka‘rnaugh._Map

Note how one term is common in three groups formed and the similarity with Method-] solution.

In Method-3, we use Entered Variable Map for minimization. Fi igure 3.40 shows the solution by this
method.

Since 1 = C + C,weneeda scparate group for AB = 00 as C is not explained by other two groups
We use (' embedded in ] to make other two groups bigger and reduce the number of hterals, and thus
minimize the expression.
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- o 4 S :
4 8 ClY / AC
o o ol 1 . s - 0 S B /
{0 6 1| 1 4 B ¥ Ay— A Ll
{9 1 o} o o .0 1. ¢i:1:] C o |tici ¢l
01 1} 1 o 1| C o R
{1 0 o] o 1 ol ¢ o 1€y 0
1 o 1] 1 1 1| o T
{1 i ol e - Y=AB+AC+BC 5
o1t oo

} Tig. 3.40 ) Solution using Entered Variable Map

In Method-4, . we use QM algorithm for minimization. Fig. 3.41 shows prime implicants and essen-
tial prime implicants. The final solution is artived at by combining essential prime implicants.

Stagel | Stage2 6 1 3 s
4 ABC w1

000 (0 Y| 00— @1 .. '

© V)2 CD e A

001 (1) | 01 (1,3) o

e | 01 (1,5y . BC ~ R
o (1):;11 ".(.35')'. v o " ATl dre essential

SO G © Y=A'B+AC+BC
' ane i_ﬁipﬁc'am.é_o_nly from stage 2. ' '

““Theyare: o

0048, 0-1 (4'C) and -01 (B'C)

Solutioh using QM AIgbrithm

Every Boolean equation has a dual form obtained by changing OR to AND, AND toOR,0to 1, and L to
0. With Boolean algebra you may be able to simplify a Boolean equation, which implies a simplified logic
circuit. :

Given a truth table, you can identify the fundamental products that produce output 1s. By ORing these
products, you get a sum-of-products equation for the truth table. A sum-of-products equation always
results in an AND-OR circuit or its equivalent NAND-NAND circuit.

The Karnaugh method of simplification starts by converting a truth table into a Karnaugh map. Next.
You encircie all the octets, quads, and pairs. This allows you to write a simplified Boolean equation and to
draw a simplified logic circuit. When a truth table contains don't-cares, you can treat the don't-cares as 0s
or 1s, whichever produces the greatest simplification. ' '

One way to get a product-of-sums circuit is to complement the Karnaugh map and write the simpli-
fied Boolean equation for Y . Next, you draw the NAND-NAND circuit for Y . Finally, you change the
NAND-NAND circuit into a NOR-NOR circuit by changing all NAND gates to NOR gates and comple-
menting all signals.
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Entered variable map maps a truth table into lower dimension. space compared to Karnaugh map
though the simplification procedure is similar. Quine-McClusky method provides a step-by-step approach
for logic simplification and is a preferred tool that involves large number of variables. Practical digital
circuit requires finite propagation delay to transfer information frotn input to cutput. This often leads to

hazards in the form of unwanted glitches. Hazards are

hazard cover.

chip An integrated circuit. A piece of
semiconductor material with a micro-
miniature circuit on its surface.

consensus theorem A theorem that simplifies
a Boolean equation removing a redundant
consensus theorem.

don’t-care  condition An input-output
condition that never occurs during normal
operation. Since the condition never occurs,
you can use an X on the Karnaugh map. This
Xcan be a 0 or a 1, whichever you prefer.
dual circuit Given a logic circuit, you can find
it dual as follows, Change each AND (NAND)
gate to an OR (NOR) gate, change each OR
{NOR) gate to an AND (NAND) gate, and
complement all input-output signals.

Entered variable map an altemnative to
Karnaugh map where a variable is placed as
output.

Hazard unwanted glitches due to finite
propagation delay of logic circuit.

Hazard cover additional gates in logic circuit
preventing hazard.

Quine-McClusky method a tabular method
for logic simplification.

togic clip A device attached to a 14- or 16-pin

prevented by using additional gates serving as

DIP. The LEDs in this troubleshooting tool
indicate the logic states of the pins.
Karnaugh map A drawing that shows all the
fundamental products and the corresponding
output values of a truth table,

octet Eight adjacent 1s in a 2 x 4 shape on a
Karnaugh map.

overlapping groups Using the same 1 more
than once when looping the 1s of a Karnaugh
map.

pair Two horizontally or vertically adjacent 1s
on a Karnaugh map.

product-of-sums equation The logical product
of those fundamental sums that produce output
1s in the truth table. The corresponding logic
circuit is an QR-AND circuit, or the equivalent
NOR-NOCR circuit.

guad Four horizontal, vertical, or rectangular
15 on a Kamnaugh map.

redundant group A group of 1s on a Karnaugh
map that are all part of other groups. You can
eliminate any redundant group.
sum-of-products equation The logical sum
of those fundamental products that produce
output 1s in the truth table. The corresponding
logic circuit is an AND-OR circuit, or the
equivalent NAND-NAND circuit.

31

_PROBLEMS -

Draw the logic circuit for
Y=A4BC+ABC

Next, simplify the equation with Boolean
algebra and draw the simplified logic circuit.
Draw the logic ctrcuit for

Y=(A+B+C)(4+B+C)
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Use Boolean algebra to simplify the equation, ¢. Pin 9 is grounded.

Then draw the corresponding logic circuit. d. Pin 8 is shorted to +5 V.
3.3 In Fig. 3.42a, the output NAND gate acts like

a 2-input gate because pins 10 and 11 are tied

together. Suppose a logic clip is connected to

the 7410. Which of the three gates is defective 3.6 What is the sum-of-products circuit for the

if the logic clip displays the data of Fig. truth table of Table 3.117
3.42h7 3.7 Simplify the sum-of-products equation in

Prob. 3.6 as much as possible and draw the
corresponding logic circuit.

3.8 A digital system has a 4-bit input from 0000
to 1111. Design a logic circuit that produces a
high output whenever the equivalent decimal
input is greater than 13.

3.9 We need a circuit with 2 inputs and 1 output.
The output is to be high only when 1 input
is high. If both inputs are high, the output is
to be Jow. Draw a sum-of-products circuit for

O ol

[o1I="NEN

ol 10 this.
02 13@
o 2] eon
o5 we| OO
s 90 3.10 Draw the Karnaugh map for Table 3.11.
e 80 3.11 Draw the Kamaugh map for Table 3.13.
(b)
Pin 1 ﬂ
®1 140
82 13® Pin 2 _!_——|_'_
oon |9 B8 Y —
O =0n Pin 13
05 100
e 90

®7 80 Pin 12 L_l
© Pin 3 ]_“

3.4 If alogic clip displays the states of Fig. 3.42¢

for the circuit of Fig. 3.42a, which of the gates Pin 5 _‘_|
is faulty?
3.5 The circuit of Fig. 3.42a has trouble. If Fig. Pin 6 By
3.43 is the timing diagram, which of the
following is the trouble: Pin 8 1A

a. Upper NAND gate is defective.
b. Pin 6 is shorted to +5 V.
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Show Karnaugh map for equation ¥ = F(4, B,
O =Zm(1,2,3,6,7)

Show Kamaugh map for equation ¥ = F{4, B,
C,D)=Zm(1,2,3,6,8,9,10,12,13, 14)

Draw the Karnaugh map for Table 3.11. Then
encircle all the octets, quads, and pairs you
can find.

Repeat Prob. 3.14 for Table 3.14.

What is the simplified Boolean equation for
the Karnaugh map of Table 3.13? The logic

320

321

Suppose the last six entries of Table 3.11 are
changed to don’t-cares. Using the Karnaugh
map, show the simplified logic circuit.
Assume the first six entries of Table 3.13 are
changed to don’t-cares. What is the simplified
logic circuit?

Suppose the inputs 1010 through 1111 only ap-
pear when there is trouble in a digital system.
Design a logic circuit that detects the presence
of any nibble input from 1010 to 1111.

circuit? 3.22 Draw the unsimplified product-of-sums circuit
3.17 Given Table 3.14, use Karnaugh simplification for Table 3.11.
and draw the simplified logic circuit. 3.23 Repeat Prob. 3.20 for TablF 3.13. .
3.18 Table 3.15 on the next page shows a special 3.24 Draw a NOR-NOR circuit for this Boolean

code known as the Gray code. For each binary expression: _ B
input 4ABCD, there is a cotresponding Gray- Y=(A+B+CYA+B+CYA+B+C)
code output. What is the simplified sum-of- 325 Give SOP form of ¥ = F(4, B, C, D} =TT M(0,
products equation for ¥3? For ¥,? For ¥;? For 3,4,5,6,7,11,15)
¥y? Draw a logic circuit that converts a 4-bit 326 Draw Karnaugh map of Y= F(4, B, C, D) =TI
binary input to a Gray-code output. M(0,1,3,8,9, 10, 14, 15)

4 B C D Y A B < D Y

0 0 0 0 0 0 0 0 1} 0

] ¢ 0 1 1 0 0 0 1 1

0 0 1 0 0 0 0 1 0 1

0 0 1 1 0 0 0 1 1 1

0 1 0 0 0 0 1 0. 0 0

0 1 0 I I 0 1 Sy 1 0

0 1 1 0 0 0 1 1 0 0

0 1 1 1 0 ) 1 t 1 1

1 0 0 0 0 N 0 0 0 1

1 0 0 1 0 1 0 0 1 1

1 0 1 0 i 1 0 1 0 1

1 0 1 1 1 1 0 S 1 0

1 1 0 0 i 1 1 )] 0 0

1 1 0 1 1 I 1 B 1 1

1 ! 1 0 0 1 ! 1 0 0

i 1 i 1 0 1 1 1 - 1 0
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Gray Code
A B C D Y; Ys Y, Yy
0 0 0 0 1] 0 0 0
0 0 0 | 1] 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 ¢ 0 1 0
0 1 0 0 0 ! 1 0
0 1 0 1 0 ] 1 1
0 1 I 0 ] i 0 1
0 1 1 1 ] 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 l 1 1 1 0
1 | ¢ 0 | 0 1 0
1 1 ¢ l | 0 1 1
1 1 1 0 1 0 ¢ 1
1 1 i 1 1 0 ¢ 0
3.30 You are given the following Boolean
N equation
3.27 What is the simplified NOR-NOR circuit for Y=ABCD+ABCD + ABCD
Table 3.117 Show the simplified NAND-NAND circuit
3.28 Draw the simplified NOR-NOR circuit for for this. Also, show the simplified NOR-NOR
3.29 Figure 3.4 shows all the input waveforms for 331 Table 3.16 is the truth table of full adder,
the timing diagram of Fig. 3.30¢. Draw the a logic circuit with two outputs called the
waveform for the output Y. CARRY and the SUM. What is the simplified
NAND-NAND circuit for the C4RRY output?
For the SUM output?
A 3.32 Repeat Prob. 3.27 using NOR-NOR circuits
8
B Full-Adder Truth Table
c 4 8 12 A B C Carry Sum
0 0 0 0 0
B 2 4 6 8 101214 0 0 i 0 y
D 0 1 0 0 1
1 3 5 7 9 11 1315 0 l 1 i 0
¥ 1 0 0 0 1
1 0 1 1 0
1 l 0 1 0
1 1 1 l 1
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3.33 Simplify to give POS form by grouping c C
zeros in Karnaugh map for equation given in 48lt 1
problem 3.27. _
3.34 Simplify to give POS form by grouping 4510 0
zeros in Karnaugh map for equation given in 4811 o
problem 3.28. El e
() Sections 3.9 and 3.10 3.38 Verify with timing diagram if the following

N . circuit shows dynamic hazard.
3.35 Get simptified expression of Y= F(4, B, C, D)

=Zm(l, 2. 8,9 10, 12, 13, 14) using Quine- A
McClusky method. B
3.36 Get simplified expression of Y= F(4, B, C, D, C—1
EY=Xm(0,1,2,3,4,5 12,13, 14, 26,27, 28, Y
29, 30) using Quine-McClusky method,
3.37 For the following Karnaugh map give SOP D

and POS form that do not show static-0 or
static-1 hazard.

- LABORATORY EXPERIMENT

AlM: The aim of this experiment is to venfy 3'App'araﬁ'|s 5V DC Power suppiy, Mult:-

De Morgan’s theorems. - - : meter, and Bread Board :

Theory: Deé Morgan’s two theorems are Work eiement. Venfy the truth table of IC
(A+BY =4 B 7404, 7408,.7432,.7402 and 7400. Intercon-

nect them in such a manner so that right hand

and “ 'B_) 4+ E _ sides of the equations are implemented. Find
NAND gate and NOR gate can be used to its truth table. Compare it with truth table of
generate the left hand side of the two equations NOR and NAND gates.

while NOT gate, AND gate and OR gate can be
used to generate the right hand side.

[ [ [ G 6 5] 05 [ [5]._[ []._[6][5] [7]
7404 7432
urDjz ﬁmv mmimiwmmm
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10,

11.

12

A s e

© 00

ee

[1a] [13] [12] [ii] [io} [9] []

False

Y=AB+ AC
Y=
Four, eight ..

- False

A Karnaugh map is a visual dJsplay of the
fundamental products needed for a sum-of-
products solution.

. Sixteen
- Pair.

Eight

Y=ABCD + ABCD + ABCD + ABCD
Simplifyas Y= BD =

A don’t-care condition is an input condition
that never occurs during normal operations,
and it is indicated with an X,

An X can be used to create pairs, quads,
octets, etc, :

_ ’_1_'3". .
14;

15.

16.

17,

18.

g

A product—of sums expressxon leads directly
to an OR-AND cu‘cwt

“Change ‘all NAND gates to NOR gates, and

complement all signals (see Example 3.10).
Prime implicants are expressions with least
number of literals that represents all the terms
given in a truth table.

Systematic, step-by-step approach that
¢an be implemented in a digital computer
and providing solution for any number of
variables.

A logic high pulse of very shert duration
when output should be at logic low.

Dynamic hazard occurs when circuit owput
makes multiple transitions before it settles
while the logic GQuatinn asks for only one
transition; . C :
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Data-Processing Circuits

Determine the output of a multiplexer or demultiplexer based on input conditions.
Find, based on input conditions, the output of an encoder or decoder.

Draw the symbol and write the truth table for an exclusive-OR gate.

Explain the purpose of parity checking.

Show how a magnitude comparator works.

Describe a ROM, PROM, EPROM, PAL, and PLA.

+re e e

This chapter is about logic circuits that process binary data. We begin with a discussion of multiplexers,
which are circuits that can select one of many inputs, Then you will see how multiplexers are used as a design
alternative to the sum-of-products solution. This will be followed by an examination of a variety of circuits,
such as demultiplexers, decoders, encoders, exclusive-OR gates, parity checkers, magnitude comparator, and
read-only memories. The chapter ends with a discussion of programmable logic arrays and relevant HDL
concepts.

. 4.1 MULTIPLEXERS '

Multiplex means many into one. A mulnplexer is a circuit with many inputs but only one output. By applying

control signals, we can sieer any input to the output. ] Thus it is also called a data selector and control inputs
are termed select inputs. Figure 4.1a illustrates the general idea. The circuit has # input signals, m control
mgnMput signal. Note that, m control signals can select at the most 2" input signals thus » < 27
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The circuit diagram of a 4-to-1 multiplexer is shown in Fig. 4.1c and its truth table in Fig. 4.1b. Depending
on control inputs 4, B one of the four inputs 1 to D is steered to output Y.

Let us write the logic equation of this circuit. Clearly, it will give a SOP representation, cach AND gate
generating a product term, which finally are summed by OR gate. Thus,

Y =A'B'.Dy+A’B.D, + AB".Ds + AB.D;

Ifd=0,8=0, Y=00 Dy +0.00,+0.0.D;+0.0D;
or, Y=1104+10.D;+0.1.05+0.0.D,
Qr, Y=D,

In other words, for AB = 00, the first AND gate to which Dy is connected remains active and equal to Dy
and all other AND gate are inactive with output held at logic 0. Thus, multiplexer output ¥ is same as Dy, If
Dy=0,¥=0andif Dy=1,Y=1.

Simitarly, for 4B = 01, second AND gate will be active and all other AND gates remain inactive. Thus,
output ¥ =D,. Following same procedure we can complete the truth table of Fig. 4.1b.

Control input

[T
A B
1 ———q
2 - ) o
: : n-to-1 OQutput Dy —1 K 3 ~AB.Dy
Data » 4 \poisiplexer fﬂ__m__ )
input ,
?I‘! - ] D} JON 4 \ r_:\ Yy AB.Dl
@) ,D2 — M /T N _ Y
4 817 T AB.D,
0 0| D
o 1| D Dy —N T N
1 oD |/ 48.D;
11| Dy
(c)

{(a) Multiplexer block diagram, (b) 4-to-1 multiplexer truth table,
{c) Its logic circuit

Now, if we want 5-to-1 multiplexer how many select lines are required? There is no 5% combination
passible with two select lines and hence we need a third select input. Note that, with three we
can select up to 2° = 8 data inputs. Commercial multiplexers ICs come in integer power of 2, ¢.g.
2-to-1, 4-to-1, 8-to-1, 16-to-1 muitiplexers. With this background, let us look at a 16-to-1 multiplexer circuit,
which may look complex but follows same logic as that of a 4-to-I multiplexer.

16-to-1 Multiplexer

Figure shows a 16-to-1 multiplexer. The input bits are labeled Dy to Dy5. Only one of these is transmitted to
the output. Which one depends on the value of ABCD, the control input. For instance, when

ABCD = 0000
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the upper AND gate is enabled while all other AND gates are disabled. Therefore, data bit D, is transmitted
to the output, giving

Y:DO

If Dy is low, ¥ is low; if Dy is high, ¥ is high. The point is that ¥ depends only on the value of D,
If the control nibble (group of 4-bits) is changed to

ABCD = 1111

all gates are disabled except the bottom AND gate. In this case, D5 is the only bit transmitted to the output,
and
Y=D;s
As you can see, the comirol nibble determines which of the input data bits is transmitted to the output,
Thus we can write output as

Y=A'B'C'D'.Dy+ A’B'C’'D.Dy + A’B'CDY . Dy + ... + ABCD'.Dyy + ABCD . Dy 5

At this point can we answer, how would an 8 to 1 multiplexer circuit look like? First of all we need three
sclect lines for 8 data inputs. And there will be 8 AND gates each one having four inputs; three from select
lines and one from data input. The final output is generated from an OR gate which takes input from 8 AND
gates. The equation for this can be written as

Y=AB'C".Dy+A'B'C.D,+ A’'BC".Dy + A'BC. Dy + AB'C’ Dy + AB'C.Ds + ABC’. D + ABC . D5

Thus, for ABC = 000, multiplexer output ¥ = Dy; other AND gates and corresponding data inputs D, to D,
remain inactive. Similarly, for ABC = 001, multiplexer output Y =D, for 4BC = 010, multiplexer output ¥ =
D)5 and finally, for ABC = 111, multiplexer output ¥ = D5

The 74150

Try to visualize the 16-input OR gate of Fig. 4.2 changed to a NOR gate. What effect does this have on the
operation of the circuit? Almost none. All that happens is we get the complement of the selected data bit
rather than the data bit itself. For instance, when 4BCD = 0111, the output is

Y=Dp,

This is the Boolean equation for a typical transistor-transistor logic (TTL) multiplexer because it has an
inverter on the output that produces the complement of the selected data bit.

The 74150 is a 16-to-! TTL multiplexer with the pin diagram shown in Fig. 4.3. Pins 1 to 8 and 16 to 23 are
for the input data bits Dy to Dys. Pins 11, 13, 14, and 15 are for the control bits ABCD. Pin 10 is the output;
and it equals the complement of the selected data bit. Pin 9 is for the STROBE, an input signal that disables or
enables the multiplexer. As shown in Table 4.1, a low strobe enables the multiplexer, so that output ¥ equals
the complement of the input data bit:

Y=D,
where # is the decimal equivalent of ABCD. On the other hand, a high strobe disables the multiplexer and
forces the output into the high state. With a high strobe, the value of ABCD doesn’t matter.
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1st AND gate output: A BC’ DD,

2nd AND gate output: A BC”D.D,

3rd AND gate output: 4 B'C DD,

4th AND gate output: 4’B'C D.D;

5th AND gate output: A’BC' DD,

6th AND gate output: A BC'D.D;

7th AND gate output: A’ BC D"Dg

8th AND gate output: 4’ BC D.D,

L

J UL

JU U U

9th AND gate output: 48°C’D".Dy
10th AND gate output: ABC"D.Dy
11th AND gate output: ABC D".Dy
12th AND gate output: AB°C D.D;
13th AND gate output: ABC" DDy,
14th AND gate output: 4BC' DD,
15th AND gate output: ABC D°.D |,

16th AND gate output: ABC D.D5

Sixteen-to-one multiplexer
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D, [ 1] 24] Ve 74150 Truth Table
Dy E 23] p, Strobe A B C b ¥
D E 22|, L L L L L Dy
) L L L L H Dy
Dy 4 :ZI]DEI) L L L H L l_)z
D5 20D, L L L H H D
L L H L L 54
D 1910, o
Lo 74150 19] 0, L L H L H D
Dy E EDIEI L i H H I B
Dy (8] 17D, L L H H " Dy
L H L L L Dy
STROBE [ 9] [16] D, . o . ; ; A
¥[10 t5|D L H L H L Do
[T e L H L H H Dy
L H H L L 1)12
GND [12 138 L " o i . 5
L H H H L Dia
Pinout diagram of 74150 L H H H H Bis
H X X X X H

Multiplexer Logic

Digital design usually begins with a truth table. The problem is to come up with a logic circuit that has the
same truth table. In Chapter 3, you saw two standard methods for implementing a truth table: the sum-of-
products and the product-of-sums solutions. The third method is the multiplexer solution. For example, to use
a 74150 to implement Table 4.2. Complement each Y output to get the corresponding data input:

DO'— 1=0

D] =6:!

Dz =T:0
and so forth, up to

D]5:TTO

Next, wire the data inputs of 74150 as shown in Fig. 4.4, so that they equal the foregoing values. In other
words, Dy is grounded, D is connected to +5 V, D, is grounded, and so forth. In each of these cases, the data
input is the complement of the desired ¥ output of Table 4.2.

Figure 4.4 is the multiplexer design solution. It has the same truth table given in Table 4.2. If in doubt,
analyze it as follows for each input condition. When ABCD = 0000, Dy is the selected input in Fig. 4.4,
Since Dy is low, Y is high. When ABCD = 0001, D) is selected. Since D, is high, ¥is low. If you check the
remaining input possibilities, you will see that the circuit has the truth table given in Table 4.2
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Data sheets often show inversion bubbles on some of the signal lines. For instance, notice the bubble on pin
10, the output of Fig. 4.4. This bubble is a reminder that the output is the complement of the selected data
bit.

Bubbles on Signal Lines

4 B C D

A B C b ¥ sy |11 .13 14 115
0 0 0 0 i ? 8ip,
0 0 0 1 0 Tip,
0 0 1 0 1 6l
0 0 1 1 1 5|4 24

D Eas
0 1 0 0 1 4 D3 Ve
0 1 0 1 1 3 D“
0 1 1 0 0 213
0 1 ! 1 0 kG o
1 0 0 0 ! 3127 qais0 P
1 0 0 1 | ™ Dy
t 0 1 0 1 Dy
1 0 I 1 1 ;(1) Dy, .
] ! 0 0 1 o1 2n STROBE
} } (1) (1) (l) T 12

_ D ND
1 1 1 1 1 17 D” G
14 =
16 =
DlS

Using a 74150 for multiplexer
logic

Also notice the bubble on the STROBE input {pin 9). As discussed earlier, the multiplexer is active
(enabled) when the STROBE is low and inactive (disabled) when it is high. Because of this, the STROBE is
called an active-low signal; it causes something to happen when it is low rather than when it is high. Most
schematic diagrams use bubbles to indicate active-low signals. From now on, whenever you see a bubble on
an input pin, remember that it means the signal is active-low.

Universal Logic Circuit

Multiplexer sometimes is called universal logic circuit because a 2"-to-1 multiplexer can be used as a design
solution for any » variable truth table. This we have seen for realization of a 4 variable truth table by 16-to-1
multiplexer in Fig. 4.5. Here, we show how this truth table can be realized using an 8-to-1 multiplexer. Let’s
consider 4,B and C variables to be fed as select inputs. The fourth variable D then has to be present as data
input. The method is shown in Fig. 4.5a. The first three rows map the truth table in a different way, similar
to the procedure we adopted in entered variable map (Section 3.3). We write all the combinations of 3 select
inputs in first row along different columns. Now corresponding to each value of 4 variable D, truth table
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ABC 000 001 010 011 100 101 110 111
D=0 1 1 1 0 1 1 1 0
D=1 i 1 1 0 1 1 1 1

Y D’ 1 1 0 1 1 1 D
8-to-l MUX | Dy=D"| D=1 D,=1 D=0 Dy=1|Ds=1|Dsg=1|Db,=D
data input

D +5v

0

f— 1,
ety

=N L R W R e D

(b)
(@8 Fig. 4.5 ) A four variable truth table realization using 8-to-1 multiplexer

output Y is written in 2" and 3" row. The 4™ row writes ¥ as a function of D. In fifth row we assign data
input values for 8-to-1 multiplexer simply copying ¥ values obtained in previous row. This is because for
each select variable combination a multiplexer transfers a particular input to its output. In 8-to-1 multiplexer,
ABC = 000 selects Dy, ABC = 001 selects D) and so on. The corresponding circuit is shown in Fig. 4.5b.

Note that, we can choose any of the four variables (4,8,C,D) of truth table to feed as input to 8-to-1
multiplexer but then mapping in first three rows of Fig. 4.5a will change. The rest of the procedure wili
remain same. We show an alternative to this technique for a new problem in Example 4.2.

Nibble Multiplexers

Sometimes we want to select one of two input nibbles. In this case, we can use a nibble multiplexer like the
one shown in Fig. 4.6. The input nibble on the left is 434,414y and the one on the right is B; BB, By. The
control signal labeled SELECT determines which input nibble is transmitted to the output. When SELECT is
low, the four NAND gates on the left are activated; therefore,

Y3Y2Y| YO =A3A2A1A0
When SELECT is high, the four NAND gates on the right are active, and
Y3 Y2 Yl Y(J = 33323130

Figure 4.7a on the next page shows the pinout diagram of a 74157, a nibble multiplexer with a SELECT
input as previously described. When SELECT is low, the lefl nibble is steered to the output. When SELECT
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SELECT —T—D

is high, the right nibble is steered to the output. The 74157 also includes a strobe input. As before, the strobe
must be low for the multiplexer to work properly. When the strobe is high, the multiplexer is inoperative.

SELECT [ 1 | 16] Vee

4] 2] [15] STROBE Ay 4y Ay Ay By By By By

By[3] [14] 4 |2 |5 l11|14|3 |5 |10|13
1

;[ 4] 13] B, SELECT —

p 74157 v 5 14157

2'1 E‘ 0 STROBE —

72 L6] e OABE
nlz 1912 LERR LR AU £
GND[ 8] 517,
(a) (b}
(&) Fig. 4.7 ) Pinout diagram of 74157

Figure 4.7b shows how to draw a 74157 on a schematic diagram. The bubble on pin 15 tells us that
STROBE is an active-low input.

Show how 4-to-1 multiplexer can be obtained using only 2-to-1 multiplexer.

Solution - .
Logic equation for 2-to-1 Multiplexer: ~~ Y=A"Do+4.Dy



@ Digital Principles and Applications

Logic equation for 4-to-1 Multiplexer: Y=A'B'Dy+A'BD)| + AB".Dy + AB.D
This can be rewritten as, Y=A(B’"Dy+B.D)) + A(B' D7+ B.Dy)
Compare this with equation of 2-to-1 multiplexer. We need two 2-to-1 multiplexer to realize two bracketed terms

where B serves as select input. The output of these two multiplexers can be sent to a third multiplexer as data inputs
where 4 serves as select input and we get the 4-to-1 multiplexer. Figure 4.8a shows circuit diagram for this,

(a) Realize Y=A'B + B'C’ + ABC using an 8-to-1 multiplexer. (b) Can it be realized with a 4-to-1 multiplexer?

Solution

(a) First we express ¥ as a function of minterms of three variables. Thus
Y =4'B+B'C'+ 4BC -
Y=A4'B(C"+CY+ B'C(4" + A) + ABC[As, X + X" = 1]
Y=A'B'C' + A'BC’' + A’BC+ AB’C’ + ARC
Comparing this with equation of 8 to 1 multiplexer, we find by substituting Dy=D3 =Dy =Dy =Dy =1 and
D1 = Ds = Dg = 0 we get given logic relation. S )

(b} Let variables 4 and B be used as selector in 4 to 1 multiplexer and C ifed as input. The 4-to-1 multiplexer
generates 4 minterms for different combinations of AB. We rewrite given logic equation in such a way that all
these terms are present in the equation. : :

 Y=AB+B'C'+4BC _ R
Y=AB+B'C'(A"+ 4) + ABC [As, X+ X' = 1]
Y=A'B.C'+A'B1+AB.C’ + AB.C -
Compare above with equation of a 4-to-1 multiplexer. We see Dy= ¢, D=1, Dy =’ and D3 =C generate the
given logic function. Coe

Design a 32-to-1 multiplexer using two 16-to-1 multiplexers and one 2-to-1 multiplexer.

Solution The circuit diagram is shown in Fig. 4.8b. A 32-to-1 multiplexer requires log,32 = 5 select lines say,
ABCDE. The lower 4 select lines BCDE chose 16-to-1 multiplexer outputs. The 2-to-1 multiplexer chooses one of the
output of two 16-to-1 multiplexers depending on what appears in the 57 select line, A.

| il
D{}___ 0
Dy—lp D,—1
L A i : | 4
i E
E 1
1o D s—15 0
R B |
D1y
Dz——- 0 37 1
- A FE
D3———- 1 E :j
Dy —i13
(@) (b}

(@ _Fig. 4.8 ) Realization of higher order multiplexers using lower orders
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1. A circuit with many inputs but only one output is called a
2. What is the significance of the bubble on pin 10 of the multiplexer in Fig. 4.5?

. 4.2 DEMULTIPLEXERS'

Demultiplex means one into many. A demultiplexer is a logic circuit with one input and many outputs. By
applying control signals, we can steer the input signal to one of the output lines. Figure 4.92 illustrates the
general idea. The circuit has 1 input signal, m control or select signals and » output signals where r < 2",
Figure 4.9b shows the circuit diagram of a 1-to-2 demultiplexer. Note the similarity of muitiplexer and
demultiplexer circuits in generating different combinations of control variables through a bank of AND gates.
Figure 4.9c lists some of the commercially available demultiplexer 1Cs. Note that a demultiplexer IC can also
behave like a decoder. More about this will be discussed in next section.

Control input

12 m
H‘ - . ) A 1€ No. Dr_ar;ap(élx D;r;;cier
1 2 ——|>o—:>_ Yo 74154 | 140-16 | 4-to-16
Input . Output 74138 | 1to-8 | 3408
Ly, ¥y 74155 | l-to-4 | 2-to-4

(b (c)

) (a} Demultiplexer block diagram, (b) Logic circuit of 1-to-2 demultiplexer,
{c) Few commercially available I1Cs

1-to-16 Demultiplexer

Figure 4.10 shows a I-to-16 demultiplexer. The input bit is labeled D. This data bit (D) is transmitted to the
data bit of the output lines. But which one? Again, this depends on the value of ABCD, the control input.
When ABCD = 0000, the upper AND gate is enabled while all other AND gates are disabled. Therefore, data
bit D is transmitted only to the ¥y output, giving Yo=D. If D is low, Yy is low. If D is high, ¥; is high. As you
can see, the value of ¥, depends on the value of D. All other outputs are in the low state. If the control nibble
is changed to ABCD = 1111, all gates are disabled except the bottom AND gate. Then, D is transmitted only
to the ¥ output, and ¥y5=D.

The 74154

The 74154 is a 1-to-16 demultiplexer with the pin diagram of Fig. 4.11. Pin 18 is for the input DATA D, and
pins 20 to 23 are for the control bits 4BCD. Pins 1 to 11 and 13 to 17 are for the output bits Yy to ¥q5. Pin 19
is for the STROBE, again an active-low input. Finally, pin 24 is for ¥ and pin 12 for ground.
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y
24} Ve | ‘|B ‘|7 T
.2—_3]D 20|21]22 231 ;
0
o2 7,
21] 8 4y
3
20] 4 b ¥,
6
19] STROBE o
74154 18 p-— X
18] DATA D DATA—4 . R
Gl _is) i
13 STROBE p10_ ¥,
16] 17y 91"]3— Yy
NERS
[15] s 14y
15
14] 1 P s
b—— Y.
13} 7, 17y

Pinout diagram of 74154 Logic diagram of 74154

Figure 4.12 shows how to draw a 74154 on a schematic diagram. There is one input DATA bit (pin 18)
under the control of nibble 4BCP. The DATA bit is automatically steered to the output line whose subscript is
the decimal equivalent of ABCD. Again, the bubble on the STROBE pin indicates an active-low input. Notice
that DATA is inverted at the input (the bubble on pin 18) and again on any output (the bubble on each output
pin). With this double inversion, DATA passes through the 74154 unchanged.

oy In Fig. 4.13a, what does the Y} output equal for each of the following conditions:

a. Ris high, Tis high, ABCD = 0110.
b. Rislow, Tis high, ABCD = 1100.
¢. Rishigh, Tis high, 4BCD = 1100.

Solution R A s shE L B T e
a. Since R and T are both high, the STROBE is low and the 74154 is active. Because ABCD = 0110, the input data
is steered to the Y5 output line (pin 7). The ¥} output remains in the high state (see Table 4.3).
b. Here, the STROBE is high and the 74154 is. inactive. The Y2 output is high.

€. With R and T both high, the STROBE is low and the 74154 is active, Since ABCD = 1100, the ,tw(o pulses am
steered to the Y12 output (pin 14),

Show how two 1-to-16 demultiplexers can be connected to get a 1-to-32 demultiplexer.

Solution Figure 4.13b shows the circuit diagram. A 1-to-32 demultiplexer has 5 sclect variables ABCDE, Four of
them (BCDE) are fed to two 1-to-16 demultiplexer. And the fifth (d) is used to select one of these two multiplexer
through strobe inpitt. If 4 = 0, the top 714154 is chosen and BCDE directs data to one of the 15 outputs of that IC. If
A = 1, the bottom IC is chosen and depending on value of BCDE data is directed to one of the 15 outputs this IC.
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ABCD
lzo|21|22,23 4
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R— ) 19] 74154 09_}:8 BCDE
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EN
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iy

16 Y, STROBE 15

(a) {b)

o

~ Alegic circuit with one input and many outputs is calleda - .

4. For the 74154 demultiplexer, what must the logic levels ABCD be in order to steer the DATA
input signal to output line ¥,,?’ ' o

5. If ABCD = LHLH, DATA = L, and STROBE = H, what will the logic level be at ¥s on a

74154?

. 4.3 1-OF-16 DECODER .

A decoder is similar to a demultiplexer, with one exception—there is no data input. The only inputs are the
control bits ABCD, which are shown in Fig. 4.14. This logic circuit is called a l-0f-16 decoder because only
1 of the 16 output lines is high. For instance, when ABCD is 0001, only the Y} AND gate has all, inputs high;
therefore, only the ¥, output is high. If ABCD changes to 0100 only the ¥, AND gate has all inputs high; as
a result, only the ¥, output goes high.

If you check the other ABCD possibilities (0000 to 1111), you will find that the subscript of the high output
always equals the decimal equivalent of ABCD. For this reason, the circuit is sometimes called a binary-to-
decimal decoder. Because it has 4 input lines and 16 output lines, the circuit is also known as a 4-/ine to
16-line decoder.

Normally, you would not build a decoder with separate inverters and AND gates as shown in
Fig. 4.14. Instead, you would use an IC such as the 74154. The 74154 is called a decoder-demultiplexer,
because it can be used either as a decoder or as a demultiplexer.
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e

1-of-16 decoder

You saw how to use a 74154 as a demultiplexer in Sec. 4.2. To use this same IC as a decoder, all you have
to do is ground the DATA and STROBE inputs as shown in Fig. 4.15. Then, the selected output line is in the
low state (see Table 4.3). This is why bubbles are shown on the output lines. They remind us that the output
line is low when it is active or selected, For instance, if the binary input is

ABCD = 0111
then the Y7 output is low, while all other-outputs are high.
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DATA

STROBE L

Using 74154 as decoder

Figure 4.16 illustrates chip expansion. We have expanded two 741545 1o get a 1-0f-32
decoder. Here is the way the circuit works. Bit X drives the first 74154, and the complement of
X drives the second 74154, When X is low, the first 74154 is active and the second is inactive.

74154 1I>c 74154

Y, bl Yy p—
2 2
¥ Y, p—
19 Y p3— 19 Y, p—
t.STROBE - L4 TSSTROBE L4
X DATA  y |5 DATA  y, [S
6 6
20 ¥s p—o 20 ¥
4 7114 ¥ °—*; 2114 ¥ ;
‘g 73 g Y e o7 ‘g i
23 P 23 i
D D Yy o — I} Yy it —
YID b-”— YIO °ll_
13 13
b o
HETY o Y p—
A L Y pi—
16 16
g Yup—
17 17
Ylsr— Y5 p—

m Chip expansion
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The ABCD input drives both decoders but only the first is active; theretore, only one output
line on the first decoder is in the low state.

On the other hand, when X is high, the first 74154 is disabled and the second one is enabled.
This means the ABCD input is decoded into a low output from the second decoder. In effect,
the circuit of Fig. 4.16 acts like a 1-of-32 decoder.

In Fig. 4.16, all output lines are high, except the decoded output line. The bubble on each
output line tells anyone looking at the schematic diagram that the active output line is in the
low state rather than the high state. Similarly, the bubbles on the STROBE and DATA inputs
of each 74154 indicate active-low inputs.

Show how using a 3-t0-8 decoder and multi-input OR gates following Boolean expressions
can be realized simultaneously.

F1{4, B. ) = £m(0, 4, 6); F2(4, B, C) = Zm(0, 5); F2(4, B, C}=Em(1, 2, 3, 7)

Solution  Since ammmmgecan the minterrns we use them as shown in Fig. 4.17 1o get the required
Boolean ﬁmcum}s

A B T

| RUBO  FABO  FUBO
=InOA§ ~Zm09) ~Im(1237

4.4 BCD-IO-_DECIMAL:DECGDERS

BCD is an abbreviation for binary-coded decimal. The BCD code expresses each digit in a decimal number
by its nibble equivalent. For instance, decimal number 429 is changed to its BCD form as follows:
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4 2 9
\J ) {
0100 0010 1001

To anyone using the BCD code, 0100 0010 1001 is equivalent to 429.
As another example, here is how to convert the decimal number 8963 to its BCD form:

8 9 6 3
3 3 A3 \J
1000 1001 0110 0011

Again, we have changed each decimal digit to its binary equivalent.

Some early computers processed BCD numbers. This means that the decimal numbers were changed into
BCD numbers, which the computer then added, subtracted, etc. The final answer was converted from BCD
back to decimal numbers.

Here is an example of how to convert from the BCD form back to the decimal number:

0101 0111 1000
) \J 1
5 7 8

As you can see, 578 is the decimal equivalent of 0101 0111 1000,

One final point should be considered. Notice that BCD digits are from 0000 to 1001. All combinations
above this (1010 to 1111) cannot exist in the BCD code because the highest decimal digit being coded is 9.

BCD-to-Decimal Decoder

The circuit of Fig. 4.18 is called a /-0f-10 decoder because only 1 of the 10 output lines is high. For instance,
when ABCD is 0011, only the Y3 AND gate has ail high inputs; therefore, only the ¥; output is high, If ABCD
changes to 1000, only the Y3 AND gate has all high inputs; as a result, only the Y3 output goes high.

If you check the other ABCD possibilities (0000 to 1001), you will find that the subscript of the high
output always equals the decimal equivalent of the input BCD digit. For this reason, the circuit is also called
a BCD-to-decimal converter.

The 7445

Typically, you would not build a decoder with separate inverters and AND gates, as shown in Fig. 4.18.
Instead, you would use a TTL IC like the 7445 of Fig. 4.19. Pin 16 connects to the supply voltage V- and pin
8 is grounded. Pins 12 to 15 are for the BCD) input (4BCD), while pins 1 to 7 and 9 to 11 are for the outputs.
This IC is functionally equivalent to the one in Fig. 4.18, except that the active output line is in the low state.
All other output lines are in the high state, as shown in Table 4.4. Notice that an invalid BCD input (1010 to
1111) forces all output lines into the high state.

The decoded outputs of a 7445 can be connected to light-emitting diodes (LEDs), as shown
in Fig. 4.20. If each resistance is 1 k{2 and each LED has a forward voltage drop of 2 V, how
much current is there through a LED when it is conducting? (See Chapter 13 for a discussion
of LEDs.)
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Solution . When an outpuns in the low sta!e youcanapproxmte meautpm: vultagea;s tzro Themthm the current
ﬁlmugh aLED ts .

The LEDs of Fig. 4.20 are numbered 0 through 9. Which of the LEDs is lit for each of the
following conditions:

a. ABCD = (010].
b. ABCD =1001.
c. ABCD=1100.

Soim‘ian

CoE WhmABCD 0101 ﬂaedeco&doutput hnc;s]% Since%ﬁappm;mately gmunfjm, LEDShghts up. Al
:“ u&aLEDsmamaﬁ'mﬁaeoﬁmoutpmsmhxgh
b, When ABCD = 1001, LED 915 o ' :
€. ABCI)-—"Ilw:sanmahdinMTherefore,noﬁeofﬁmLEDswmbeeausealloutput,hmsareMgh(seeTable
44)4 2 ! . :

8. WhatdocstheablnwmlonBCDsmndfor‘?
: 9 WhansaLED"

4.5  SEVEN-SEGMENT DECODERS

A LED emits radiation when forward-biased. Why? Because free electrons recombine with holes near the
junction. As the free electrons fall from a higher energy level to a lower one, they give up energy in the form
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of heat and light. By using elements like gallium, arsenic, and phosphorus, a manufacturer can produce LEDs
that emit red, green, yellow, blue, orange and infrared (invisible) light. LEDs that produce visible radiation
are useful in test instruments, pocket calculators, etc.

Seven-Segment Indicator

Figure 4.21a shows a seven-segment indicator, i.e. seven 7 [~
LEDs labeled a through g. By forward-biasing different L/ _/
LEDs, we can display the digits 0 through 9 (see Fig. / =
4.21b). For instance, to display a 0, we need to light up a / L7
segments a, b, c, d, e, and f. To light up a 5, we need N — —
segments a, ¢, 4, f, and g. / / g / b — /

Seven-segment indicators may be the common-anode Y — /77
type where all anodes are connected together (Fig. / / € _/ =7
4.22a) or the common-cathode type where all cathodes re I 7
are connected together (Fig. 4.22b). With the common- / =/
anode type of Fig, 4.22a, you have to connect a current- (a) (b)

limiting resistor between each LED and ground. The

size of this resistor determines how much current flows Seven-segment indicator
through the LED. The typical LED current is between 1

and 50 mA. The common-cathode type of Fig. 4.22b uses a current-limiting resistor between each LED and
+ VCC'

(a) Common-anode type, (b) Common-cathode type

The 7446

A seven-segment decoder-driver is an IC decoder that can be used to drive a seven-segment indicator. There
are two types of decoder-drivers, corresponding to the common-anode and common-cathode indicators. Each
decoder-driver has 4 input pins (the BCD input) and 7 output pins (the a through g segments).

Figure 4.23a shows a 7446 driving a common-anode indicator. Logic circuits inside the 7446 convert the
BCD input to the required output. For instance, if the BCD input is 0111, the internal logic (not shown) of the
7446 will force LEDs a, b, and ¢ to conduct. As a result, digit 7 will appear on the seven-segment indicator.

Notice the current-limiting resistors between the seven-segment indicator and the 7446 of
Fig. 4.23a. You have to connect these external resistors to limit the current in each segment to a safe value
between 1 and 50 mA, depending on how bright you want the display to be.
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ndicator
v t indicato

TR
sriiiir |
-

BCD input

‘-—J

12 11 10 9 15 |14
7446 Decoder/driver
- e
L7 i NV
I ] 1 1
6 7 1 2 6 8 d e |f e
L] 'Tl ITI L|_| L[J L] 7_-Sde.gment
v indicator
« 4 g cp OND E
BCD input =
(a) {b)

(@9 Fig. .23 ) (a) 7446 decoder-driver, (b) 7448 decoder-driver

The 7448

Figure 4.23b is the alternative decoding approach. Here, a 7448 drives a common-cathode indicator. Again,
internal logic converts the BCD input to the required output. For example, when a BCD input of 0100 is used,
the internal logic forces LEDs b, ¢, f; and g to conduct. The seven-segment indicator then displays a 4. Unlike
the 7446 that requires external current-limiting resistors, the 7448 has its own current- -limiting resistors on
the chip. A switch symbol is used to illustrate operation of the 7446 and 7448 in Fig. 4.23. Switching in the
actual IC is of course accomplished using bipolar junction transistors (BJTs).

-y
-

10 Sketch the segments in'a seven-segment indicator.
11 Msegmeni of a seven-segment indicator is what type of devxce‘?

., 4.6 ENCODERS '

An encoder converts an active input signal into a coded output signal. Figure 4.24 illustrates the general idea.
There are » input lines, only one of which is active. Internal logic within the encoder converts this active input
to a coded binary output with m bits.
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Decimal-to-BCD Encoder

Figure 4.25 shows a common type of encoder—the decimal-to-BCD p—

encoder. The switches are push-button switches like those of a pock- 7 nputs Encoder
et calculator. When button 3 is pressed, the C and D OR gates have -
high inputs; therefore, the output is [l ...
ABCD = 0011 m outputs
If button 5 is pressed, the output becomes
ABCD=0101 Encoder
When switch 9 is pressed, 5V
o
ABCD = 1001 ) (l) e
> [
The 74147 I
¢ J——
Figure 4.26a is the pinout diagram for a 74147, a |
decimal-to-BCD encoder. The decimal input, X to X5, G i
connect to pins | to 5, and 10 to 13. The BCD output e .
comes from pins 14, 6, 7, and 9. Pin 16 is for the supply R
voltage, and pin 8 is grounded. The label NC on pin 15 .
means no connection (the pin is not used). "T' .
Figure 4.26b shows how to draw a 74147 on a ¢ o7 *

schematic diagram. As usual, the bubbles indicate
active-low inputs and outputs. Table 4.5 is the truth table
of a 74147. Notice the following. When a]l X inputs are
high, all outputs are high. When Xj is low, the ABCD A B B B
output is LHHL (equivalent to 9 if you complement the Y
bits). When Xy is the only low input, ABCD is LHHH

X4‘I EVCC 12 4 Ve 8
= —q X, GNDE—
(2] [15] vC 5],
_a .;
%[5 14] 4 Ldy RE
—a A, /
X [4] B3]% 2 6
7445 —q A; 74147 Bl—
5
- 6 o
X
G mp Je b
7] 05 sy
GND[ 8] 9D ke dx,
{a) (b}

{a) Pinout diagram of 74147, (b) Logic diagram
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74147 Truth Table

Cutputs
X X X3 X X X X7 Xy X A B C D
H H H H H H H H H H H H H
b'¢ X X X X X X X L L H H L
e X X X X X b'e L H L H H H
b'e b'e X X X b'¢ L H H H L L L
X X X X X L H H H H L L H
b'e X ¢ X L H H H H H L H L
b'e X X L H H H H H H L H H
X b'e L H H H H H H H H L L
b'e L H H H H H H H H H L H
L H H H H H H H H H H H L

(equivalent to 8 if the bits are complemented). When X is the only low input, ABCD becomes HLLL
{equivalent to 7 if the bits are complemented). Continue like this through the rest of the truth table and you
can see that an active-low decimal input is being converted to a complemented BCD output.

Incidentally, the 74147 is called a priority encoder because it gives priority to the highest-order input. You
can see this by looking at Table 4.5. If all inputs X, through X, are low, the highest of these, Xy, is encoded
to get an output of LHHL. In other words, Xy has priority over all others. When Xy is high, X3 is next in line
of priority and gets encoded if it is low. Working your way through Table 4.5, you can see that the highest
active-low from Xy to X, has priority and will control the encoding.

(: x nle 4.10 ) What is the ABCD output of Fig. 4.27 when button 6 is pressed?

Solution When all switches are open, the X) to X5 inpuis are pulled up to the high state (+5 V). A glance at Table
4.5 indicates that the ABCD output is FHHH at this time.

When switch 6 is pressed, the X¢ input is grounded. Therefore, all X mputs are h;gh except for X5 Table 4.5
indicates that the ABCD output is HLLH, which is equivalent to 6 when the output bits are complemented.

— 5V

All resistors are 1 k€2 t6

Veo
74147
A

b 14
o
7
b—
9
b

B
C
D

!
s
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Design a priority encoder the truth table of which is shown in Fig. 4.28a. The order of priority
for three inputs is X7 > X» > X3. However, if the encoder is not enabled by § or all the inputs
are inactive the output AB = 00.

Solution Figure 4.28b and Fig. 4.28c show the Karnaugh map for ouiput 4 and B respectively. Note that, we have
used a different notation for input variables in these maps. Compare this with notations presented in previous chapters.
You will find a variable with prime is presented by 0 and if it is not primex is represented by 1. Then taking groups
of 1s we get the design equations as shown in the figure. The logic circuits for output 4 and B can be directly drawn
from these equations. .

Totput Output 00 o1 11 10
hY D (RN . OO . ¢ A B XoX;
T T T T 5T o 000 0 0 O
1 1 X b 0 1 010 0 0O
1 0 1 X 1 0 1ilo o o
1 0 { 0 1 1 1 lo o o
1 o | ol o] o] o

A=5XX,+ 5K, X, B=SX, + SX,X,
(b) (©

Design of a priority encoder

12. What is an encoder?
13. What type of encoder is the TTL 74147‘?

@37 _FXCLUSIVE-OR GATES )

The exclusive-OR gate has a high output only when an odd
number of inputs is high. Figure 4.29 shows how to build
an exclusive-OR gate. The upper AND gate forms the

product AB, while the lower one produces AB . There- A8
fore, the output of the OR gate is ‘____D- b
AB

Y=AB+AB

‘ }

Here is what happens for different inputs. When 4 and
B are low, both AND gates have low outputs; therefore,
the final output Y is low. If 4 is low and B is high, the
upper AND gate has a high output, so the OR gate has high
output. Likewise, a high 4 and a low B result in a final output that is high. If both inputs are high, both AND
gates have low outputs and the final output is Jow.

Table 4.6 shows the truth table for a 2-input exclusive-OR gate. The output is high when A4 or 8 is high, but

not when both are high. This is why the circuit is known as an exclusive-OR gate. In other words, the output
is a 1 only when the inputs are different.
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(&3 Table 4.6 )

A B Y

i >

B
Logic symbol for
exclusive-OR gate

Exclusive-OR Truth Table

—p T
—_—0 = D
Do = O

Figure 4.30 shows the symbol for a 2-input exclusive-OR gate. Whenever you see this symbol, remember
the action—the output is high if either input is high, but not when both are high. Stated another way, the
inputs must be different to get a high output.

Four Inputs

Figure 4.31a shows a pair of exclusive-OR gates A
driving an exclusive-OR gate. If all inputs (4 to D) B
are low, the input gates have low outputs, so the fi- ¥

nal gate has a low output. If 4 to C are low and D
is high, the upper gate has a fow output, the lower
gate has a high output, and the output gate has a (a)
high output,

If we continue analyzing the circuit operation for
the remaining input possibhilities, we can work out
Table 4.7. Here is an important property of this truth
table. Each ABCD input with an odd number of 1s
produces an output 1, For instance, the first ABCD
entry to produce an output 1 is 000! ; 1t has an odd

oo

(IR

(b)

Four-input exclusive OR gate

( E ?:ﬁile 4.7 4-Input Exclusive-OR Gate

Comment A B C D Y
Even 0 0 0 0 0
0Odd 0 0 0 1 1
0dd 0 0 1 0 1
Even 0 0 i 1 0
Odd 0 I 0 0 |
Even Q 1 1] 1 0
Even 0 1 1 0 0
0dd 0 1 1 1 1
Odd 1 0 ] 0 1
Even 1 0 0 1 0
Even | 0 1 0 0
Odd 1 0 1 1 1
Even 1 1 0 0 0
0dd 1 1 0 1 1
Qdd 1 1 1 0 1
Even 1 1 | 1 0
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number of 1s. The next ABCD entry to produce an output 1 is 0010; again, an odd number of 1s. An output
I also occurs for these ABCD inputs: 0100, 0111, 1000, 1011,1101, and 1110, each having an odd number
of 1s.

Figure 4.3 1a illustrates the logic for a 4-mput exclusive-OR gate. In this book, we will use the abbreviated
symbol given in Fig. 4.31b to represent a 4-input exclusive-OR gate. When you see this symbeol, remember
the action—the gate produces an output 1 when the ABCD input has an odd number of 1s.

Any Number of Inputs

Using 2-input exclusive-OR gates as building blocks, you can produce exclusive-OR gates with any number
of inputs. For example, Fig. 4.32a shows a pair of exclusive-OR gates. There are 3 inputs and 1 output. If you
analyze this cireuit, you will find it produces an output 1 only when the 3-bit input has an odd number of 1s.
Figure 4.32b shows an abbreviated symbol for a 3-input exclusive-OR gate.

B o =
(a) ‘ (b)

(d

Exclusive-OR gate with several inputs

As another example, Fig. 4.32¢ shows a circuit with 6 inputs and 1 output. Analysis of the circuit shows
that it produces an output 1 only when the 6-bit input has an odd number of 1s. Figure 4.32d shows an
abbreviated symbol for a 6-input exclusive-OR gate.

In general, you can build an exclusive-OR gate with any number of inputs. Such a gate always produces
an output 1 only when the r-bit input has an odd number of 1s.

14, 'When is the output of an exclusive-OR gate high?
15. Draw the logic symbol for an exclusive-OR gate.

. 4.8 PARITY GENERATORS AND CHECKERS '

Even parity means an n-bit input has an even number of 1s. For instance, 110011 has even parity because
it contains four 1s. Odd parity means an »-bit input has an odd number of 1s. For example, 110001 has odd
parity because it contains three 1s,
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Here are two more examples:

1111 0000 1111 0011 even parity
1111 0000 1111 0111  odd parity

The first binary number has even parity because it contains ten 1s; the second binary number has odd
parity because it contains eleven 1s. Incidentaily, longer binary numbers are much easier to read if they are
split into nibbles, or groups of four, as done here.

Parity Checker 10101 100100 01100

Exclusive-OR gates are ideal for checking the parity of a
binary number because they produce an output 1 when the
input has an odd number of 1s. Therefore, an even-parity in-
put to an exclusive-OR gate produces a low output, white an
odd-parity input produces a high output.

For instance, Fig. 4.33 shows a 16-input exclusive-OR
gate. A 16-bit number drives the input. The exclusive-OR
gate produces an output 1 because the input has odd parity 1
(an odd number of 1s}. If the 16-bit input changes to another
value, the output becomes 0 for even-parity numbers and 1
for odd-parity numbers.

Exclusive-OR gate
with 16 inputs

Parity Generation

In a computer, a binary number may represent an instruction that tells the computer to add, subtract, and so
on; or the binary number may represent data to be processed like a number, letter, etc. In either case, you
sometimes will see an extra bit added to the original binary number to produce a new binary number with
even or odd parity,

For instance, Fig. 4.34 shows this 8-bit binary number:
X7 Xe X5 Xy GAX X

Suppose this number equals 0100 0001. Then, the num-
ber has even parity, which means the exclusive-OR gate
produces an output of 0. Because of the inverter,

Xg =1
and the final 9-bit output is | G100 0001. Notice that this has
odd parity.
Suppose we change the 8-bit input to 0110 0001. Now, it

has odd parity. In this case, the exclusive-OR gate produces
an output 1. But the inverter produces a 0, so that the final

8-bit number

A

X, Xy X X, X, X, X, X,

9-bit output is 0 0110 0001. Again, the final output has odd — — —
parity. X Instruction or data bits )
The circuit given in Fig. 4.34 is called an odd-parity gen- 9-bit number with odd parity

erator because it always produces a 9-bit output number

witil odd parity. If the 8-bit input has even parity, a 1 comes Odd-parity generation
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out of the inverter to produce a final output with odd panty. On the other hand, if the 8-bit input has odd
parity, a 0 comes out of the inverter, and the final 9-bit output again has odd parity. (To get an even-parity
generator, delete the inverter.)

Application

What is the practical application of parity generation and checking? Because of transients, noise, and other
disturbances, 1-bit errors sometimes occur when binary data is transmitted over telephon lines or other
communication paths. One way to check for errors is to use an odd-parity generator at the 1ansmitting end
and an odd-parity checker at the receiving end. If no 1-bit errors occur in transmission, the received data will
have odd parity. But if one of the transmitted bits is changed by noise or any other disturbance, the received
data will have even parity.

For instance, suppose we want to send (100 0011. With an odd-parity generator like Fig. 4.34, the data
to be transmitted will be 0 0100 0011. This data can be sent over telephone lines to some destination. If no
errors occur in transmission, the odd-parity checker at the receiving end will produce a high output, meaning
the received number has odd parity. On the other hand, if a 1-bit error does creep into the transmitted data,
the odd-parity checker will have a low output, indicating the received data is invalid.

One final point should be made. Errors are rare to begin with. When they do occur, they are usually 1-bit
errors. This is why the method described here catches almost all of the errors that occur in transmitted data.

The 74180

Figure 4.35 shows the pinout diagram for a 74180, which is a TTL parity generator-checker. The input data
bits are X7 to Xg; these bits may have even or odd parity. The even input (pin 3) and the odd input (pin 4)
control the operation of the chip as shown in Table 4.8. The symbol T stands for summation. In the left input
column of Table 4.8, X of A’s (highs) refers to the parity of the input data X7 to Xj. Depending on how you
set up the values of the even and odd inputs, the Z even and Z odd outputs may be low or high.

For instance, suppose even input is high and odd input is low. When the input data has even parity (the
first entry of Table 4.8), the X even output is high and the £ odd output is low. When the input data has odd
parity, the X even output is low and the X odd output is high.

%, [1] [14] Vec
%[2] 73] % @IREAE)) 74160 Truth Table
EVEN INPUT [ 3 | 12] %, Inputs Ourputs
ODDINPUT[4] 74180  [11]% ZofHsat Even  Odd Seven  Zodd
Xr10X
X EVEN OUTPUT [ 5 | [10] X dein
Even H L H L
X ODD OUTPUT [ 6 | BES Y odd p I . el
Even L H L H
GND[7 g X
[ 815 0Odd L H H L
X H H L L
(@$ Fig. 4.35 ) Pinput diagram of 74180 X L L H H
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If you change the control inputs. you change the operation. Assume that the even input is low and the odd
input is high. When the input daia has cven parity, the  even output is low and the I odd output is high.
When the input data has odd parity, the X even output is high and the £ odd output is low.

The 74180 can be used to detect even or odd parity. [t can also be set up to generate even or odd parity.

K7 X X X X506 X, X

45V 1208 ]9 o213

E
4] -
QDD INPUT
74180

F EVEN INPUT
I ODD OUTPUT

6
Xy Xo Xy X Xy X, X, X, X,

Using a 74180 to generate odd parity

(: 4 1 Show how 1o connect a 74180 1o generate a 9-bit output with odd parity.

Solution Figure 4.36 shows one solution. The QDD INPUT {pin 4) is connected to +35 V, and the EVEN INPUT
{pin 3) is grounded. Suppose the input data X7 ... X has even parity. Then, the third entry of Table 4.8 tells us the T
ODD OUTPUT (pin 6) is high. Therefore, the 9-bit number Xy ... X; coming out of the circuit has odd parity.

On the other hand, suppose X7 ... X, has odd parity. Then the fourth entry of Table 4.8 says that the Z odd output
is low. Again, the 9-bit number Xy ... Xp coming out at the bottom of Fig, 4.36 has odd parity.

The following conclusion may be drawn. Whether the input data has even or odd parity, the 9-bit number being
generated in Fig. 4.36 always has odd parity,

t6. What does it mean to say that an »-bit binary number has even parity?
7. Exclusive-OR gates are useful as parity generators. (T or F)

. 4.9 MAGNITUDE COMPARATOR '

Magnitude comparator compares magnitude two #-bit binary numbers, say X and ¥ and activates one of these
three outputs X' = ¥, X'> ¥Yand X < Y. Figure 4.374 presents block diagram of such a comparator. Fig. 4.37b
presents truth table when two 1-bit numbers are compared and its circuit diagram is shown in F ig. 4.37¢. The
logic equations for the outputs can be written as follows, where G, L. E stand for greater than, less than and
equal to respectively.

(X>T):G=XY (X<YEL=XT  (X=F)QE=XY+XY=(XY'+X'¥)=(G+Ly
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X, —
g
XQ—:- —(X>7¥) Input Output
n-bit x=7 XY |X>Y X=Y X<¥ ¥
comparator 0 0 0 5 n X<Y
S F=&<h o1 0o 1t o0 X=Y
5 R
(I rol 1 0o o0 e
Yy——= 11{ 0 0 1 Y
(a) (b) (¢)

(&) Fig. 4.37 ) (a) Block diagram of Magnitude comparator, (b) Truth table, (c) Circuit
for 1-bit comparator

Now, how can we design a 2-bit comparator? We can form a 4-variable (X: X|.Xg and Y: Y, ¥y) truth table
and get logic equations through any simplification technique. But this procedure will become very complex
if we try to design a comparator for 3-bit numbers or more. Here, we discuss a simple but generic procedure
for 2-bit comparator design, which can easily be extended to make any 7-bit magnitude comparator. We shall
use the truth table of 1-bit comparator that generates greater than, less than and equal terms.

Let’s first define bit-wise greater than terms (G): G =X Y/, Go=Xp ¥y
Then, bit-wise less than term (L): Ly =X\Yy, Ly=X¢'Yy
Therefore, bit-wise equality term (£): E ={G +L)), Eg=(Ggt+ LgY

From above definitions we can easily write 2-bit comparator outputs as follows.
(X=Y")=ELEy, (X>Y)=G+E.Go (X<N=Lt+E.L
The logic followed in arriving at these equations is this; X = ¥ when both the bits are equal.
X > Yif MSB of X is higher (G| = 1) than that of ¥. If MSB is equal, given by £, = 1, then LSB of Xand ¥is
checked and if found higher (G; = 1) the condition X > Y is fulfilled. Similar logic gives us the X < ¥ term.
Thus for any two r-bit numbers X: X, | X, .. 5and V. ¥, ¥, 0... Ty
We can write, (X=YVY=E,.1E,2...Ey
(X> =Gy +Ep Gyt T Ep t Enoae E1Gy
X<V =Lyt EpiLlnat.. +E Epa Eilo
where E;, G, and L, represent for ith bit X; = Y; , X; > ¥; and X; < ¥, terms respectively.
The block diagram of IC 7485, which compares two 4-bit numbers is shown in Fig. 4.38a. This is a 16 pin
IC and all the pin numbers are mentioned in this functional diagram. Note that the circuit has three additional
inputs in the form of (X = )y, (X> ¥);, and (X < V);,. What is the use of them? They are used when we need
to connect more than one IC 7485 to compare numbers having more than 4-bits. But these inputs are of lower
priority. They can decide the output only when 4-bit numbers fed to this IC are equal. For example, if X =
0100 and ¥ = 0011, (X> ¥)oy will be high and other outputs will be low irrespective of the value appearing at
(X = V)i, (X> ip and (X < ¥);,. When IC 7485 is not used in cascade we keep (X' = 1);, =1, (X > Y)in=0and
(X<V)p=0.
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X ¥
XXX X, 1Y, 7, ¥, XX XX, VY Y. ¥, XXX, X, Y17,
P L] L -
15131210 114119 15131210 11411 9 15131210 114119
4"‘“‘""""_(X> in 4 4
IC7485 3l (x=p" IC7485 3 IC7485 3
2——(X<Y) 2 2
5 6 7 n 5 i} 7 5 [ 7
Ve (16) S
oo ||| Pl
(X> Vo X= Vg (X< Yy (X> Ty (X=TFyy (X<Fyy
(a) (b)

(a) Functional diagram of IC 7485, (b) 8-bit comparator from two 4-bit
comparators

Show how twe IC 7485 can be used to compare magnitude of two 8-bit numbers.

Solution Refer to Fig. 4.38b for solution. The numbers to compare are X° Xy Xﬁ Xoand ¥ ¥y Ye.. .Yo. We need
two IC 7485s each one comparing 4 bits. The most significant bits (sufﬁx 76,5 4) are glven h:gher pnonty and the
final output is taken from that IC 7485 which compares them. . ;

18. How many outputs a magnitude compaféfbr géﬂerﬁtes;?_" - a
19. How many IC 7485s are needed to compare two 12-bit numbers?

. 4.10  READ-ONLY MEMORY '

A read-only memory (which is abbreviated ROM and rhymes with Mom) is an IC that can store thousands of
binary numbers representing computer instructions and other fixed data. A good example of fixed data is the
unchanging information in a mathematical table. Since the numerical data do not change, they can be stored
in a ROM, included in a computer system, and used as a “look-up” table when needed. Some of the smaller
ROMs are also used to implement truth tables. In other words, we can use a ROM instead of sum- of-products
circuit to generate any Boolean function.

Diode ROM
Diode ROM Nibble
Suppose we want to build a circuit that stores the binary num- 0 0111
bers shown in Table 4.9. To keep track of where the numbers 1 1006
are stored, we will assign addresses. For instance, we want to g _ }%é
store 0111 at address 0, 1000 at address 1, 1011 at address 2, and 4 0110
so forth. Figure 4.39 shows one way to store the nibbles given 5 1001
in Table 4.9. When the switch is in position 0 (address 0), the 6 G011
upper row of diodes are conducting current (they act as closed 1 1110
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switches). (See Chapter 14 for a discussion of diodes.) The output of the ROM is thus
LY Yy=0111
When the switch is moved to position 1, the second row is activated and
Y3Y,Y,¥Yy=1000
As you move the switch to the remaining positions or addresses, you get a Y3 ... ¥y output that matches
the nibbles given in Table 4.9.

ha

o
o

+5V

X XXX
XX
XX

R

XA

X
X

!
1-

— Yl *>— YO

AN

Diode ROM

On-Chip Decoding

Rather than switch-select the addresses as shown in Fig. 4.39, a manufacturer uses on-chip decoding. Figure
4.40 illustrates the idea. The 3-input pins (4, B, and C) supply the binary address of the stored number. Then,
a [-of-8 decoder produces a high output to one of the diode rows. For instance, if

ABC =100
the 1-0f-8 decoder applies a high voltage to the ABC line, and the ROM output is
Y3Y2Y1 Y0=0110
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If you change the binary address to
ABC=110

the ROM output changes to
Y3Y2Y1Y0=0011

With on-chip decoding, » inputs can select 2" memory locations (stored numbers), For instance, we need
3 address lines to access 8 memory locations, 4 address lines for 16 memory locations, 8 address lines for
256 memory locations, and so on.

Commercially Available ROMs

A binary number is sometimes called a word. In a computer, binary numbers or words represent instructions,
alphabet letters, decimal numbers, etc. The circuit given in Fig. 4.40 is a 32-bit ROM organized as 8 words

A B C

VIVIY

!

JUUUUUU

4

X
P

y

X XA
P
XX

A

ABC

ABC

o
X ¥

ABC

L

X X

X
X

L-

— ¥, 4

On-chip decoding

A

I—AAN T
in
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with 4 bits at each address (an 8 x 4 ROM). The ROM given in Fig. 4.40 is for instructional purposes only
because you would not build this circuit with discrete components. Instead, you would select a commercially
available ROM. For instance, here are some TTL ROMs:

7488: 256 bits organized as 32 x 8
74187: 1024 bits organized as 256 x 4
748370: 2048 bits organized as 512 x 4

As you can see, the 7488 can store 32 words of 8 bits each, the 74187 can store 256 words of 4 bits cach,
and the 745370 can store 512 words of 4 bits each. If you want to store bytes (words with 8 bits), then you
can parallel the 4-bit ROMs. For example, two parallel 741875 can store 256 words of 8 bits each.

One way to change the stored numbers of a ROM is by adding or removing diodes. With discrete circuits,
you would have to solder or unsolder diodes to change the stored nibbles. With integrated circuits, however,
you can send a list of the data to be stored to an IC manufacturer, who then produces a mask (a photographic
template of the circuit). This mask is used in the mass production of your ROMs. As a rule, ROMs are used
only for large production runs {thousands or more) because of manufacturing costs.

Generating Boolean Functions

Because the AND gates of Fig. 4.40 produce all the fundamental products and the diodes OR some of these
products, the ROM is generating four Boolean functions as follows:

Y; =ABC+ABC + ABC + ABC + ABC (4.1)
Y, = ABC + ABC + ABC + ABC 4.2)
Y, = ABC + ABC + ABC + ABC + ABC (4.3)
Yy = ABC + ABC + ABC + ABC (4.4)

This means that you can use a ROM instead of a logic circuit to implement a truth table.

For instance, suppose you start with a truth table like the one in Table 4.10. There are four outputs: Y3, 17,
¥, and ;. A sum-of-products solution would lead to four AND-OR circuits, one for Eq. (4.1), a second for
Eq. (4.2), and so on. The ROM solution is different. With a ROM you have to store the binary numbers of
Table 4.9 (same as Table 4.10) at the indicated addresses. When this is done, the ROM given in Fig. 4.40 1s
equivalent to a sum-of-products circuit. In other words, you can use the ROM instead of an AND-OR circuit
to generate the desired truth table.

Truth Table
A B C ¥; Y, Y, Yo
0 0 0 ] ] 1 1
0 0 1 1 0 0 0
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 0 0 0 1 1 0
1 Q i 1 0 Q 1
1 1 0 0 0 1 !
1 1 1 1 1 1 0
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Programmable ROMs

A programmable ROM (PROM) allows the user instead of the manufacturer to store the data. An instrument
called a PROM programmer stores the words by “burning in.” Here is an example of how a PROM programmer
works. Originally, all diodes are connected at the cross points. For instance, in Fig. 4.40 there would be a
total of 32 diodes (8 rows and 4 columns). Each of these diodes has a Jfusible link (a small fuse), The PROM
programmer sends destructively high currents through all diodes to be removed. In this way, only the desired
diodes remain connected after programming a PROM. Programming like this is permanent because the data
cannot be erased after it has been burned in.

Here are some commercially available PROMs:

745188: 256 bits organized as 32 x 8

748287: 1024 bits organized as 256 x 4

745472: 4096 bits organized as 512 x 8

PROMs such as these are useful for small production runs. For instance, if you are building only a few
hundred units (or maybe even just one), you would choose a PROM rather than a ROM.

Since PROMs are useful in many applications, manufacturers preduce these chips in high volume.
Furthermore, the PROM is a universal logic solution. Why? Because the AND gates generate all the
fundamental products; the user can then OR these products as needed to generate any Boolean output, One
disadvantage of PROMs is the limit on number of input variables; typically, PROMs have 8 inputs or less.

Simplified Drawing of a PROM

It is cumbersome to draw large PROMs as illustrated in Fig. 4.41, because of the large number of diodes.
An alternative, streamlined drawing procedure for PROMs like the one in F ig. 4.40 is shown in Fig, 4.41. In
this simplified drawing, the solid black

bullets indicate connections to the AND- 4 8 ¢
gate inputs. Each buliet represents a fixed Programmable OR array
connection that cannot be changed. Fur- = = Y
thermore, each AND gate has 3 inputs, |' }AB <,
indicated by the bullet on its input line. ABC
Similarly, each OR gate has 8 inputs =

.. .. o ~ABC,
as indicated by the >’s on its input line, -1 T
but each x is ible link th, M 4BC

is a fusible link that can be = -
removed. [T\A4ABC
. . . . 1
' Notice that the input S‘df" of an. 4.41 =\ A4BC
1s a fixed AND array, meaning the inputs L
to the AND gates are not programmable [ )4BC
in a PROM. On the other hand, the out- \ABC
put side of the circuit is programmable . , L/
because each connection at the input of . v
. . . Fixed AND

each OR gate is a fusible link. A fixed fxe Ay Q
AND array and a programmable OR ar- AU SO (R

ray are characteristic of all PROMs. To
begin with, every AND-gate output is
connected to every OR-gate inpat. Since

Streamlined drawing of PROM
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the AND gates produce all eight possible combinations Programmable OR array
of the input variables 4, B and C, it is possible to produce r * A
any Boolean function at the OR-gate outputs. _D ABC
¥ ABC
Programming a PROM _D -
— ABT
Generating a Boolean function at the output of a PROM _D 1BC
is accomplished by fusing (melting) fusible links at the .
input to the OR gates in Fig. 4.41. For example, suppose _D ABC
we want to generate the function ¥ = 4BC. Simply fuse _D ABC
{melt) 7 of the AND-gate outputs connected to the ¥y -
OR-gate input and leave the single AND-gate output —-D ABC
ABC connected. A portion of Fig. 4.41 is shown in Fig. -D ABC
4.43 with the proper fusible link remaining for ¥,
As a second example, suppose we want to generate the Q Q
fBrlction Y, = AB . We must include all terms containing Y, ¥, Y, %,
AB . since

Boolean function from
PROM

ABC + ABC=AB(C +C)=AB
The two top fusible links must be included, while the
remaining six are broken, as shown in Fig. 4.42. Continuing in this fashion, you can see that ¥; = 4 and Y3
= AB.

Erasable PROMs

The erasable PROM (EPROM) uses metal-oxide-semiconductor field-effect transistors (MOSFETs). Data is
stored with an EPROM programmer. Later, data can be erased with ultraviolet tight. The light passes through
a quartz window in the IC package. When it strikes the chip, the ultraviolet light releases all stored charges.
The effect is to wipe out the stored contents. In other words, the EPROM is ultraviolet-light-erasable and
electrically reprogrammable.

Here are seme commercially available EPROMs:

2716: 16,384 bits organized as 2048 < 8
2732: 32,768 bits organized as 4096 x 8
The EPROM is useful in project development. With an EPROM, the designer can modify the contents

until the stored data is perfect. When the design is finalized, the data can be burned into PROMs (small
production runs) or sent to an [C manufacturer who produces ROMs (large production runs).

20. What is a ROM?
21. What does it mean to say that a particular ROM is “512 x 877
22. What is a PROM? :
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. 4.11 PROGRAMMABLE ARRAY LOGIC '

Programmable array logic (PAL) is a programmable array of logic gates on a single chip. PALs are another
design solution, similar to a sum-of-products solution, product-of-sums solution, and multiplexer logic.

Programming a PAL

A PAL is different from a PROM becausc it has a programmable AND array and a fixed OR array. For
nstance. Fig. 4.43 shows a PAL with 4 inputs and 4 outputs. The x’s on the input side are fusible links, while
the solid black bullets on the output side are fixed connections, With a PROM programmer, we can burn in
the desired fundamental products. which are then ORed by the fixed output connections.

A B C D

[ ~— 4 *»—
’? V ? Fixed OR array

<]

y

IO

JOU0)

Programmable AND array :) qj Q Q
Y, Y

2 N I

Structure of PAL

Here is an example of how to program a PAL. Suppose we want to generate the following Boolean
functions:
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Yy = ABCD + ABCD + ABCD + ABCD (4.5)
Y, = ABCD + ABCD + ABCD _ (4.6)
¥ = ABC + ABC + ABC + ABC 4.7)
Yy = ABCD (4.8)

Start with Eq. (4.5). The first desired product is ARCD. On the top input line of Fig. 4.44 we have
to remove the first x, the fourth x, the fifth x, and the eighth x. Then the top AND gate has an output of
ABCD.

By removing xs on the next three input lines, we can make the top four AND gates produce the fundamental

products of Eq. (4.5). The fixed OR connections on the output side imply that the first OR gate produces an
output of

¥, = ABCD + ABCD + ABCD + ABCD
A B C D

L 4 4 4
’§7 »§7 Fixed OR array

K

|

JsussvsseusbeLbe

K

Programmable AND array Q

¥y Y, o5

Example of programming a PAL
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Similarly, we can remove xs as needed to generate Y5, Y1, and ¥y, Figure 4.44 shows how the PAL looks
after the necessary xs have been removed. If you examine this circuit, you will see that it produces the ¥
outputs given by Egs. (4.5) to (4.8).

Commercially Available PALs

The PAL given in Fig. 4.43 is hypothetical. Commercially available PALs typically have more inputs. For
instance, here is a sample of some TTL PALs available from National Semiconductor Corporation:

10H8; 10 input and 8 output AND-OR

16H2: 6 input and 2 output AND-OR

14L4: 14 input and 4 output AND-OR-INVERT

For these chip numbers, H stands for active-high output and L for active-low output. The 10HS and the

16H2 produce active-high outputs because they are AND-OR PALs. The 14L4, on the other hand, produces
an active-low output because it is an AND-OR-INVERT circuit (one that has inverters at the final outputs).

Unlike PROMSs, PALs are not a universal logic solution. Why? Because only some of the fundamental
products can be generated and ORed at the final outputs. Nevertheless, PALs have enough flexibility to
produce all kinds of complicated logic functions. Furthermore, PALs have the advantage of 16 inputs
compared to the typical limit of 8 inputs for PROM:s.

‘:

i

23. What is a PAL? _
24. APAL has an AND array and an OR array. Which one is fixed and which is programmable?

. 4.12 PROGRAMMABLE LOGIC ARRAYS .

Programmable logic arrays (PLAs), along with ROMs and PALs, are included in the more general
classification of ICs called programmable logic devices (PLDs). Figure 4.45 illustrates the basic operation of
these three PLDs. In each case, the input signals are presented to an array of AND gates, while the outputs
are taken from an array of OR gates.

The input AND-gate array used in a PROM is fixed and cannot be altered, while the output OR-gate array
is fusible-linked, and can thus be programmed. The PAL is just the opposite: The output OR-gate array is
fixed, while the input AND-gate array is fusible-linked and thus programmable. The PLA is much more
versatile than the PROM or the PAL, since both its AND-gate array and its OR-gate array are fusible-linked
and programmable. It is also more complicated to utilize since the number of fusible links are doubled.

A PLA having 3 input variables (4BC) and 3 output variables (XYZ) is illustrated in Fig. 4.46. Eight AND
gates are required to decode the 8 possible input states. In this case, there are three OR gates that can be used
to generate logic functions at the output. Note that there could be additional OR gates at the output if desired.
Programming the PLA is a two-step process that combines procedures used with the PROM and the PAL.

As an example, suppose it is desired to use a PLA to recognize each of the 10 decimal digits represented
in binary form and to correctly drive a 7-segment display. The 7-segment indicator was presented in Sec.
4.5. To begin with, the PLA must have 4 inputs, as shown in Fig. 4.47a. Four bits (ABCD) are required to
represent the 10 decimal numbers (see Table 1.1). There must be 7 outputs (abcdefg), 1 output to drive each
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Input
Fixed : Fusible [~ A B C
AND OR O t 1
Array : Array L uipu ? Programmable OR array
A

PROM I
Input l D—‘*_
- —
Fusible | Fixed | =
AND I OR 1 Output )
Array ! Array ——

PAL
Input
s T

I
Fusible ible |— T -,
AND 1 Qutput h —
Array L
X Y

of the 7 segments of the indicator. Let’s assume that our PLA is capable of driving the 7-segment indicator
directly. (This is not always a valid assumption, and a buffer amplifier may be needed to supply the proper
current for the indicator.)

To begin with, all fusible links are good. The circuit in Fig. 4.47b shows the remaining links after
programming. The input AND-gate array is programmed (fusible links are removed) such that each AND
gate decodes one of the decimal numbers. Then, with the use of Fig. 4.47c, links are removed from the output
OR-gate array such that the proper segments of the indicator are illuminated. For instance, when ABCD =
LHLH, segments afgcd are illuminated to display the decimal number 5. You should take the time to examine
the other nine digits to confirm proper operation.

One final point. Many PLDs are programmable only at the factory. They must be ordered from the
manufacturer with specific programming instructions. There are, however, PLDs that can be programmed
by the user. These are said to be field-programmable, and the letter F is often used to indicate this fact. For
instance, the Texas Instruments TIFPLA840 is a field-programmable PLA with 14 input variables, 32 AND
gates, and 6 OR gates; it is described as a 14 x 32 x 6 FPLA.

25. ‘Whatis a PLA?
26. How does a PLA differ from a PAL?
27. InFig. 447, ABCD = LLHH. What segments are activated?
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(@9 Fig. 4.47 ) 7-segment decoder using PLA

4.13 TROUBLESHOOTING WITH A LOGIC PROBE

Chapter 3 introduced the logic clip, a device that connects to a 14 or 16-pin IC. The logic clip contains 16
LEDs that monitor the state of the pins. When a pin voltage is high. the correspending LED lights up. When

the pin voltage is low, the LED is dark.

Figure 4.48 shows a logic probe, which is another troubleshooting tool you will find helpful in diagnosing
faulty circuits. When you touch the probe tip to the output node as shown. the device lights up for a high state
and goes dark for a low state. For instance. if either A or B, or both. are low, then Y is high and the probe lights

up. On the other hand, if 4 and B are both high, ¥ is low and the probe is dark.
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Among other things, the probe is useful for locating short
circuits that occur in manufacturing. For example, during the
stuffing and soldering of printed-circuit boards, an undesirable
splash of solder may connect two adjacent traces (conducting
lines). Known as a solder bridge, this kind of trouble can short-
circuit a node to the ground or to the supply voltage. The node
is then stuck in a low or high state. The probe helps you to find
short-circuited nodes because it stays in one state, no matter
how the inputs are changing.

4.14 HDL IMPLEMENTATION OF DATA
PROCESSING CIRCUITS

We start with hardware design of multiplexers using Verilog code. The data flow model provides a different
use of keyword assign in the form of

assign X=574: 8B,

This statement does following assignment. If, S=1,X=A4 and if §=0, = B. One can use this statement
or the logic equation to realize a 2 to 1 multiplexer shown in Fig. 4.2(a} in one of the following ways.

module mux2tol (A,D0,D1,Y); module mux2tel (A,D0C,D1,Y);
input A,D0,D1; /* Circuit shown input A,D0,D1; /* Circuit shown in
in Fig. 4.3(a)*/ Fig. 4.3(a)*/
output Y; output Y
assign Y={~A&D0) | (A&D1); assign Y= A ? Dl : DO; /*Conditional
endmodule assignment*/
endmodule

The behavioral model can be used to describe the 2 to | multiplexers in following two different ways, one
using if ... else statement and the other using case statement. The case evaluates an expression or a variable
that can have multiple values each one corresponding to one statement in the following block. Depending on
value of the expression, one of those statements get executed. The behavioral model of 2 to I multiplexer in
both is given below:

module mux2tol {A,DCG,D1,Y}; module mux2tol (A,DO,D1,Y):
input A,D0,Dl; /* Circuit shown input 2,D0,Bl; /* Circuit shown
in Fig. 4.3(a)*/ . in Fig. 4.3{(a)*/ :
output Y output ¥Y;
reg Y: reg Y;
always @ (A or DC oxr DI) always @ (A or DC or DI1)
if (A==1) Y=D1: case (A)
else Y=D0; G : Y=DO;
endmodule i : ¥Y=Dl:
endcase

endmodule
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Design a 4 to | multiplexer, shown in Fig. 4.1(c) using conditional assign and case
statements.

Solution The codes are given next. We have used nested condition for assign statement. If A = |, condition
( B ? D3 : D2) is evaluated. Then if B = 1, Y = D3. And this is what is given in Fig. 4.1(c). Similarly, the other
combinations of A and B are evaluated and Y is assigned a value from D? to DO, For case statement we concatenated
A and B by using operator {...} and generated four possible combinations, For a particular value of AB, statement
corresponding to one of them gets executed.

module mux4tcl(A,B,D0,D1,D2,D3,Y); module muxdtol (A,B,D0,D1,02,D3,Y);

input A,8,D0,D1,D2,Db3; input A,B,D0,D1,DZ,D3;

output Y; /* Circuif shown output Y; _

in Fig. 4.1 {c)*/ reg Y: B P R

asgsign Y = A ?( B ? D3 : D2):(B ? always @ {A or B ox D0 or DI or D2

Dl : DO)Y; it @B D3F o e
endmodule ~case ({A,B}) /*Concatenation of

A and B, A is MSB*/
0: Y=D0; /*Two binary digit can
generate*/
1: ¥Y=Dl; /*four different values
. 0,1,2,3 for*/ '
0 2:Y=D2; /*binary combination
_ 00,01,10* . -
3: ¥=D3; //and 11 respectively
endcase I o
endmodule

BUS Representation in HDL

We introduce concept of BUS or vector representation in HDL description through design of a 1 to 4
demultiplexer that can also serve as a 2 to 4 decoder. The data input of former is treated as enable input of
later. We consider S as a select input defined by two binary digits S[1] and S[0]. Output Y is 4 bit long, one of
which goes high for a particular combination of select inputs if data(enable) input is high. The Verilog code
for this demultiplexer/decoder is given below:

module demuxltod (5,D,Y);
input [1:0] s;
input D;
output [3:0] Y;
reg [3:0] Y:
always @ (S or D)
case ({D,5}) //Concatenation of D and 5 to give 3 bits, D is MSB
3'pbl100 : Y= 4'b0001; /*Binary representation, refer to Section 2-5.
If D=1, 8=00, Y=0001*/
3'b101 : Y= 4'bL0010; // if D=1, S=01, Y=0010
3"b110 : Y= 4'b0100; // if D=1, $=10, Y=0100 .
3'b111 : Y= 4'b1000; // if D=1, §=11, Y=1000
default : Y= 4'b0000; //For other combinations D=0, then Y=0000
endcase

endmodule
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YA verilog HDL code for a digital circuit is given as follows. Can you describe the function it
performs? Can it be related to any logic circuit discussed in this chapter?

module unknown{A,B,C,Y);
input [3:0] A,B;
input [2:0] C;
output [2:0] Y:
reg [2:0] ¥;
always ¢ (A or B or C)
if {(A<B) Y=3'b001;
else if (A>B) Y=3'b010;
else Y=C;
endmodule

Solution The circuit described by the HDL compares two 4-bit numbers A and B and generates a 3 bit output ¥. It
has also a 3 bit input C. If 4 is less than B, output Y= 001 and does not depend on C. Similarly, if 4 is greater than B,
¥ =010 irrespective of C. But if these two conditions are not met, i.e. if 4 = B then ¥ = C.

If we consider three bits of ¥ represent (starting from MSB)} A = B, 4 > B and 4 < B respectively then, this circuit
represents a 4-bit magnitude comparator where C represents comparator output of previous stage that is of lower
significance. If numbers of this stage are equal then the value at C that represents equal, greater than, less than

condition of previous stage numbers is reflected by Y. This is similar to IC 7485 discussed in Section 4.9.

. PROBLEM SOLVING WITH MULTIPLE METHODS '

Show how data processing circuits can be used to compare two 2-bit numbers, 4,4, and 8B, to
generate two outputs, 4 > Band 4= 5.

Solution We can use multiplexers, decoder or simply a 4-bit comparator. The truth table of the above problem
is shown in Fig. 4.49. ' '

In Method-1, we use two 16 to | muyltiplexers to realize 4 > B and 4 = B as shown in Fig, 4.50,
The numbers A, 4 and B B, are used as selection inputs as shown. For every selection of input, the

i BE T yors - 0—] 0000 1—{ 6000
o Zide [ APB 0— 0001 0— 0001
00 60 4] 1 00— 0010 00— 0010
8 B8 o— oo o oo
1— 6100 — 01
6o n o 0 0—1 0101 1— omé
0—1 0110 0— 011
S I S 0— 0111 0— 0111
01 10 1] 0 1— 1000 —dA>8 00— 1000 — A=
01 11 0 0 1-— 1001 0— 1001
0 00 | 1 0 0— 1011 o101
16 01 1 0
10 10 0 1 11— 1100 0—1 1100
10 11 0 0 1— 1101 0~ 1101
1— 1110 0— 1110
g0 % 0 0— 1111 1— 1111
11 10 1 0. i T'TT1
i1l 0 1 A AgB, By A,4,B, B,
(@9 Fig. 4.49 ) Truth table @) Fiz. 4.50 ) Solution using 16 to 1 multiplexers
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corresponding data input goes to the output. The input assignment comes straight from the truth table
in Fig. 4.49 for the two cases.

In Method-2, we use two 8 to 1 multiplexers to realize 4 > B and 4 = B as shown in Fig. 4.51. The
numbers 4,4y and B, are used as selection inputs while B, is part of the data input. We form pair of
combinations of the truth table for constant 4,4 B; and By variable. This helps to find out how output
varies with By.

in Method-3, we use one 4 to 16 decoder and two multi-input OR gates to realize 4 > Band 4 = B
as shown in Fig. 4.52. We sum selected minterms, as required from the truth table, from the set of all
the minterms generated by the decoder.

A|AgBy By| A>B  A4=B 0000
o ool 0001
000 1)o@ 0% s 1o 0011
6001 0 0(0) 0(0) 8 —] %g(l) F—A>8 g:g(i)
001 1]0 0 0 — 101 jl____ oror
, B, — 111 - Ag— o111
A A, B Bp—] . 1001
01190 Y o oo
011 1|0 0 1011
1100
B"-—-Ooﬁ
e Vi Yo o°Hon | 1101f
B, —] 010 1110
101 00 1 0" — 011 Com .
101 110@ (@) o —100 [—48
=i =
110 01 0 —
1106 11D 4@ B —11
Il
111 1100 Y60 Ardo, e 4B

Solution using 4 to 16
decoder

Solution using 8 to 1 multiplexers

Though we are not presenting them as a 0 04 4,
separate method, the AND bank (inside de- [

coder) and OR bank combination concept 15131210
presented here can be used to obtain solu-
tion from programmable logic devices such IC 7485 33—
as PLA, PAL, etc.

In Method-4, we follow a straightfor- 5 6
ward approach to use a 4-bit comparator (IC I i
7485 : Fig. 4.38a) for the purpose as shown 4>8  A=B
in Fig. 4.53. We keep the higher two bits ‘0’ (83 Fig. 4.53 ) Solution using 4-bit comparator
and ‘A = B input’ high so that it essentially : o
becomes a 2-bit comparator generating all three outputs 4 > B, 4 = B and 4 < B of which only first
two are useful here.

0 B, B,
|

0
L |
114119

4—0

20
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A multiplexer is a circuit with many inputs but only one output. The 16-to-1 multiplexer has 16 input
bits, 4 control bits, and 1 output bit. The 4 control bits select and steer 1 of the 16 inputs to the output. The
multiplexer is a universal logic circuit because it can generate any truth table.

A demultiplexer has one input and many outputs. By applying control signals, we can steer the input
signal to one of the output lines. A decoder is similar to a demultiplexer, except that there is no data input.
The control bits are the only input. They are decoded by activating one of the output lines.

BCD is an abbreviation for binary-coded decimal. The BCD code expresses each digit in a decimal
number by its nibble equivalent. A BCD-to-decimal decoder converts a BCD input to its equivalent decimal
value. A seven-segment decoder converts a BCD input to an output suitable for driving a seven-segment
indicator.

An encoder converts an input signal into a coded output signal. An example is the decimal-to-BCD
encoder. An exclusive-OR gate has a high cutput only when an odd number of inputs are high. Exclusive-
OR gates are useful in parity generators-checkers.

Magnitude comparators are useful in comparing two binary numbers. It generates three outputs that
give if one number is greater, equal or less than the other number. Cascading magnitude comparators we
can compare two numbers of any size.

A ROM is a read-only memory. Smaller ROMs are used to implement truth tables. ROMs are expensive
because they require a mask for programming. PROMs are user-programmable and ideal for small
production runs. EPROMs are not only user-programmable, but they are also erasable and reprogrammable
during the design and development cycle. PALs are chips that are programmable arrays of logic. Unlike
the PROM with its fixed AND array and programmable OR array, a PAL has programmable AND array
and a fixed OR array. The PAL has the advantage of having up to 16 inputs in commercially available
devices. In the PLA both the AND array and the OR array are programmable. The PLA is a much more
versatile programmable logic device (PLD) IC than the PROM or the PAL.

= getive Iow The low state is the one that causes

something to happen rather than the high
state.

BCD A binary-coded decimal.

data sefector A synonym for multiplexer.
decoder A circuit that is similar to a
demultiplexer, except there is no data input.
The control input bits produce one active
output line.

demultiplexer A circuit with one input and
many outputs.

EPROM An erasable programmable read-
only memory. With this device, the user can
erase the stored contents with ultraviotet light
and electrically store new data. EPROMs are
useful during project development where
programs and data are being perfected.

even parity A bmary number with an even
number of 1s.

exclusive-OR gate A gate that produces a high
output only when an odd number of inputs is
high.

LED A light-emitting diode.

logic probe A troubleshooting device that
indicates the state of a signal line.

Magnitude comparator compares two binary
numbers and signals if one is greater, equal or
less than other.

multiplexer A circuit with many inputs but
only one cutput.

odd parity A binary number with an odd
number of 1s.

PAL A programmable array logic (sometimes
written PLA, which stands for programmable
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logic array). In either case, it is a chip with
a programmable AND array and a fixed OR
array.

parity generation An extra bit that is generated
and attached to a binary number, so that the
new number has either even or odd parity.
PLA A programmable logic array.

PLD A programmable logic device.

PROM A programmable read-only memory. A
type of chip that allows the user to program it
with a PROM programmer that burns fusible

links at the diode cross points. Once the data
is stored, the programming is permanent.
PROM:s are useful for small production runs.
ROM A read-only memory. An IC that can
store many binary numbers at locations called
addresses. ROMsare expensive to manufacture
and are used only for large production runs
where the cost of the mask can be recovered
by sales.

strobe Au input that disables or enables a
circuit.

‘ PROBLEMS | | | .

4.1 In Fig. 42, if ABCD = 1001, what does ¥

equal?

42 In Fig. 4.4, if ABCD = 1100, what does Y

equal?

4.3 We want to implement Table 3.12 of the

preceding chapter using multiplexer logic.
Show a circuit, similar to the one in Fig. 4.4,
that can do the job.

44

4.5

4.6

Show how to connect a 74150 to implement
this Boolean equation:

Y =ABCD + ABCD + ABCD
Draw a circuit with four 74150s that has a
truth table like the one in Table 4.11,
Table 4.12 shows the Gray code. Show how
four 74150s may be connected to convert
from binary to Gray code. Show how the
same can be realized by four 74151 ICs (8-to-
1 multiplexer).

Gray Code
A B C . D Y, Y Yy Yy A B C D ¥ Ys ¥; Yo
0 0 0 0 0 0 { ¢ 0 0 0 0 0 0 0 0
0 0 0 1 I 0 H 0 ] 0 0 { 0 0 0 1
¢ 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 1 I 0 I 0 0 0 0 1 1 0 0 i Q
0 1 0 0 0 0 [} 0 0 i 0 0 0 1 1 0
0 1 ¢ 1 0 0 i ¢] 0 1 0 1 0 1 1 1
0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1
0 1 1 1 i 0 0 0 0 1 1 1 ¢ 1 0 0
1 0 0 0 ] 1 0 1 i 0 0 0 i 1 0 0
1 0 U] 1 0 0 0 1 4 0 0 1 1 | 0 1
1 0 1 0 0 0 0 0 1 0 1 0 1 1 i 1
1 0 i 1 ] 0 0 0 1 0 1 1 1 1 1 0
1 1 0 0 0 0 0 0 i 1 0 0 1 0 1 0
1 1 0 1 0 1 0 | | 1 0 1 1 0 1 1
1 1 i 0 1 0 H 0 1 1 1 0 1 0 0 1
1 1 I i 0 0 i 0 1 1 1 1 1 0 0 0
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48

49

4.10

4.11

4.12

In Fig. 4.12, if ABCD = 0101, which is the
active output line when the strobe is high?
When it is low?
Input signals R and T are low in Fig. 4.13.
Which is the active output line when ABCD =
00117 To have the ¥, output line active, what
input signals do you need?
Suppose a logic probe shows that pin 19,
given in Fig. 4.13, is always high. Which of
the following may possibly cause trouble:
a. Pin 20 is grounded.
b.Pin 18 has a sine wave instead of
pulses.
c. The R input is grounded.
d.The T input is connected to +5 V.

Are the output signals of Fig. 4.15 active low
or active high? For the IC to decode the ABCD
input, does the strobe have to be low or high?
In Fig. 4.16, suppose X = 1 and ABCD = 0110.
Which is the active chip and which is the
active output line?

Design a circuit that realizes following two
functions using a decoder and two OR gates.

F1(4,By =Z m(0,3) and
F2(A,B) =Zm(1,2)

4.13 Design a circuit that realizes following three
functions using a decoder and three OR
gates.

Fi(4,B,C) =Zm(1,3,7),
F2(A,B,C) =X m(2,3,5) and
Fi(4,8,C) =Zm{0,1,5,7)

4.14 Convert the following decimal numbers into
their BCD equivalents:
a. 32 b. 634
c. 4898

4.15 Convert the following BCD numbers into their
decimal equivalents:
a. 0110 0111
b. 1000 0001 0011
c. 0111 0010 0101 1001

4.16 InFig. 4.18, what is the high output line when
ABCD = 01017

4.17 In Fig. 4.20, which is the low output when
ABCD=0111?

4,18 Figure 4.54 shows a group of chips numbered
0 through 9. Each chip has an active-low
STROBE input. Which chip is active for each
of these conditions:

Chip 0 Chip 1 Chip2 |-« Chip 9

STROBE] STROBE
+HV 7445

STROBE T STROBE

Vec
Y
¥
412 f
513 ¥y
c 14 ¥s
15 ¥

D —
8
_L—- GND ¥y
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a. ABCD =0000. T ——
b. ABCD = 0010, y Section 4.6
¢. ABCD=1001. 422 In Fig, 4.25, what is the output when button 7
4.19 The ABCD input of F ig. 4.54 initially equals is pressed? When button 3 is pressed?
1111. For this condition, all output waveforms 423 In Fig. 427, if button 8 is pressed, which
start high in the timing diagram of Fig. 4.55. is the input pin that goes into the low state?
Another circuit not shown is supposed to What does the ABCD output equal?

produce the following input values of ABCI:
0000, 0001, Q010, 0011, 0100, 0101, 0110,
0111, 1000, and 1001.

4.24 In Fig. 4.32d, what does ¥ equal for each of

Y L L] the following inputs:

i il a. 000110 b. 011001
Y—ﬁ c. 411111 d. 111100

Yz 4.25 In Fig. 4.33, what does Y equal for the
: L] following inputs;

Ya ] a 1111 0000 1111 0000

¥ 1] b. 0101 1010 1100 0111

Y, L] T 1110 1011 1101 0001

Y, d. 00(01 0101 0011 0110

. [ 4.26 In Fig. 4.56, the 8-bit register is a logic circuit
8 that stores byte 47 ... Ag. What does byte ¥5
¥ ... Yy equal for each of these conditions:

a. A7... 49=1000 0111 and INVERT = 0.
5 S-S — b. A7... 49=0011 1100 and INVERT = 1.
The timing diagram tells us that something ¢. A7 ... Ag= 1111 0000 and INVERT = 0.

is wrong with the logic circuit of Fig. 4.54, d. A7 ... 4p= 1110 0001 and INVERT = |.
Which of the following is a possible trouble:
a. Pin 16 is not connected to the supply 8-bit register
voltage. b. Pin 8 is open.
¢. Pin 12 is short-circuited to the ground. A A, Aq A, N
[ I

d.Pin 15 is short-circuited to +5 V.

4.20 inFig. 4.21, which of the segments have to be
active to display the following digits:

a.2 b. 6 4.27 In Fig. 4.57 on the next page, each register

c. 8 is a logic circuit that stores a 6-bit number.

4.21 In Fig. 4.23a, Vee = +5 V, all resistors are | The left register stores As ... Ay and the right
k€2 and each LED has a voltage drop of 2 register stores Bs ... 8. What value does the

V. Approximately how much current is there output signal labeled EQUA4L have for each of

through an active segment? these:
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A register
As Ay Ay A A A

s

B, By B, B, B,

4.30

B register

]

1|

431
4.32
433
. 4.34
a. A7 ... Ao 1s less than B+ ... By,
b. A7 ... Agequals B7 ... By.
c. A7 ... Ap is greaterthan B, ... B, 435
4.36

4.28 In Fig. 4.58, what does X equal for each of
the following X7 . . . Xp inputs:
a. 0000 1111 b. 1111 0001
¢ 10101110 d. 101! 1100

429 In Fig. 4.58, what changes

can you make to

get a 9-bit output with even parity?

F
th
<

o)

In Fig. 4.58, assuming the circuit is working
all right, what will the logic probe indicate for
each of the following:

a. Input data has even parity.

b. Input data has odd parity.

c. Pins 3 and 4 are grounded.
Write the (X > ¥) equation for a 4-bit
comparator.
Show how magnitude of two 10-bit numbers
can be compared using IC 7485.
Suppose 2 ROM has 8 input address lines.
How many memory locations does it have?
Two 748370s are connected in parallel. To
address all memory locations, how many bits
must the binary address have?
In Fig. 4.40,1f ABC =011, what does ¥3 1,1 Y,
equal?
Draw a ROM circuit similar to the one in Fig.
4.40 that produces these cutputs:

¥, =ABC

Y- ABC + ABC

Y, = ABC+ ABC + ABC

Y, = ABC + ABC + ABC + ABC

X X X Xy X Xy X, Xy

12189 1011|12|:3

i
FRTIIE) PN b

ODD INPUT
EVEN INPUT 74180

2 ODD OUTPUT
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4.37 Draw a PROM circuit similar to the one in Fig.  4.40 Write the Boolean expression for the output

4.41 that generates the ¥ to ¥; output given in Y5 in Fig. 4.42.

Table 4.11. 4.41 The input to the PLA in Fig. 4.47 is ABCD
4.38 What is the Boolean equation for ¥; in Fig, = 0011. What segments of the indicator are

4.59 on the previous page? For Y,? For ¥,? illuminated and what decimal number is

For ¥y? displayed? What if ABCD = 10017 What
4.39 Draw a 4-input and 4-output PAL circuit that about 11117

has the truth table of Table 4.11. 4.42 Will there be any ambiguity if segment g of the

7-segment indicator in Fig. 4.47 is defective
(burned out)? What numbers are displayed?

&
&
&
-~

DUUOUODU0UUUC00S

Fixed OR array

N

i

-

9

-

—-x
—H—

Programmable AND array Q QJ Q @
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. LABORATORY EXPERIMENT .

AlM: The aim of this experiment is to dis-
play one of two BCD numbers in a 7-segment
display. '

Theory: The two BCD numbers can be se-
lected by activating select line of a multiplexer.

SELECT [ 1] 18]V
4,[2] [15]STROBE

B3 E EAO
:3 % 74157 %i"

2 ]
B,[6} 1],

A 9]z,

awls] [y

The multiplexer output then is one of the two
BCD numbers. These outputs can be connect-
ed to four inputs of a 7-segiment decoder/driv-
er. The outputs of this driver can be connected
to a 7-segment display to display the decimal
equivalent of the BCD number selected.
Apparatus: 5 VDC Power supply, Multime-
ter, and Bread Board

Muitiplexer

1t means that Y is active low.
Demultipiexer

ABRCD=HLHL.

It will be high since STROBE is high.
The outputs are active low.

Yo is low; all other outputs are high.
BCD stands for binary-coded decimal.

0 NS

¥,
e 1L LE

Work element: Verify the truth table of
multiplexer IC 74157. Note that STROBE is an
input and find its use. The common select line
applies to all four 2-to-1 multiplexers. Verify
the truth table of IC7446 for BCD inputs. Select

7-Segment indicator

At

13f 12 11 10 9 15 |14
7446 Decoder/driver

R
AL
A B C D

BCD input

resistance values to be connected in the range
220 to 1000 ohm. This is to ensure that entire
power supply voltage does not drop across the
LED of display. Interconnect properly all the
different units and verify.

1=

16
U

VCC

h;-—[:q -
b—[:c\ ---
w}

GN

9. LED stands for light-emitting diode.

10. See Fig. 4.21.

11. Each segment is an LED.

12. An encoder converts an active input
signal into a coded output signal, for
instance, decimal to binary.

13. The TTL 74147 is a decimal-to-binary
encoder.
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15.
16.
17.
18.
is.
20.
21.
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The output for an exclusive-OR gate is
high only when an odd number of inputs
are high.

See Fig. 4.30.

There are an everr number of 1s (highs).
True.

Three: X=Y, X>Yand X< ¥,

Three.

ROM stands for read-only memory.

A 512x8 ROM is arranged as 512
eight-bit words.

22

23,

24.

25.

26.

27

PROM stands for programmable read-
only memory.

PAL stands for programmable array
logic.

The AND array is programmable; the
OR array is fixed.

PLA stands for programmable logic
array.

In a PLA, both the AND array and the
OR array are programmable.

Decimal 3; segments abcdg



